
Mobility support for the VOCAL SIP architecture
Juan F. Rodríguez Hervella
Univ. Carlos III de Madrid

Av. Universidad, 30, Edif. Torres Quevedo. E-28911 Leganés (Madrid)
Tel: (+34) 91-624-8859
E-mail: jrh@it.uc3m.es

Abstract

The SIP specification has support for mobility features at different levels. Terminal, session and service mobility
can be offered seamlessly and they have already been described in the literature. In this paper, we examine the
current support for mobility on the Vovida Open Communication Application Library (VOCAL). VOCAL is a
distributed SIP architecture based on a set of systems that allow an incremental deployment of an open source SIP
platform. We describe how the new mobility feature affects the whole system, and we implement an extension to the
VOCAL program that is used to manage the User Agent (UA) in a graphical environment, called SIPSet. The new
capabilities that have been added to the SIPSet tool allow the configuration of the mobility tags in a graphical and
easy way.

1. Introduction to the SIP architecture

The Session Initiation Protocol (SIP) [4] allows two
or more participants to establish one or more
different media stream sessions [15]. SIP endpoints
are addressed by SIP URLs that looks like email
addresses, such as “sip:alice@example.com”. SIP
requests contain a source address and two
destination addresses, one for identifying the
original, logical destination of the request (the “To”
header), and another one for identifying the current
destination, which travels on the “Request URI”
header. The protocol defines a set of logical entities,
namely user agents, redirect servers, and proxy
servers. User agents are the source and the
destination of any request. Generally, user agents
are the only elements where media and signalling
converge. Redirect servers receive requests and
return responses that indicate where the request
should go next. A typical SIP architecture usually
implements a proxy server, as well as a locator and
a registrar server. The proxy server is the well
known point of contact of every user agent. It is an
intermediary program that acts as both a server and
a client for the purpose of making requests on behalf
of other clients. The locator server is used by a
redirect server or a proxy server to obtain
information about a called party's possible location
and finally the protocol holds the concept of
registrar server, which is a kind of server that
accepts REGISTER request [4] and manages the
registration process. The registrar saves the
information about where a user agent can be found,
using a database system or any other software.

Besides the previous components, some kind of
provisioning must be set up in the network for
purposes of Authentication, Authorization and
Accounting (AAA). The SIP protocol does not
define how this service should be provided.

1.1. SIP request and response messages

The following are the most common request
messages. The format of the messages is described
in [4]
• INVITE: Indicates that the user or service is

being invited to participate in a sessions
• ACK: Confirms that the client has received a

final response to an INVITE request.
• BYE: Indicates that the user wishes to terminate

the session.
• CANCEL: Cancels a previous request.
• REGISTER: Registers the address listed in the

“To” header field with a SIP server.

There are many different responses, arranged into
six different types. The response messages resemble
HTTP messages and they are identified by a three
digit number. The first number groups the kind of
message that is being transmitted.

The ACK messages are requests that complete a
transaction after a final response, such as “302
Moved Temporarily” or “200 OK”. ACK is a
request because of its structure, not necessarily
because of its behaviour or content. According to
the RFC: “SIP requests are distinguished by having
a Request-Line for a start-line. Request-Line
contains a method name, a Request-URI, and the
protocol version separated by a single space
character”. The reader can watch an example of this
in Figure 2. As for responses the RFC states: “Sip
responses are distinguished from requests by having
a Status-Line as their start-line. A Status-Line
consists of the protocol version followed by a
numeric Status-Code and its associated textual
phrase, with each element separated by a single SP
character.”

1.2. Call setup

Depending on the servers involved in the
establishment of the call, we can observe different
kind of scenarios. We talk about “call” to refer to
some communication between peers, generally set
up for the purposes of a multimedia conversation. A
“message” is the data sent between SIP elements as
part of the protocol. SIP messages are either
requests or responses. In the following examples,
we identify a SIP “transaction” as the group of
messages that are exchanged between a client and a
server and it comprises all messages from the first
request sent from the client to the server up to a
final (non-1xx) response sent from the server to the
client. For example, when a UA receives a response,
other than a “1xx” response, to an INVITE, it sends
an ACK message. The ACK message is considered
a new transaction, as it is already been explained.

In Figure 1 we describe a flow of messages between
two UAs. In the example, the INVITE message is
addressed directly to the destination UA.

 Figure 1. Basic call setup

The session starts with an INVITE message, which
typically has the look-and-feel of Figure 2:

INVITE sip:6713@163.117.140.166:6060;user=phone SIP/2.0
Via: SIP/2.0/UDP 163.117.140.182:6060
From: UserAgent<sip:6710@163.117.140.44:6060;user=phone>
To: 6713<sip:6713@163.117.140.166:6060;user=phone>
Call-ID: 96561418925909@163.117.140.44
CSeq: 1 INVITE
Subject: VovidaINVITE
Conteact: sip@6710@163.117.140.44:6060;user=phone
Content-Type: application/sdp
Content-Length: 168

v=0
o=- 238540244 238540244 IN IP4 163.117.140.44
s=VOVIDA Session
c=IN IP4 163.117.140.44
t=3174844751 0
m=audio 23456 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=ptime:20

 Figure 2. INVITE header

The INVITE message is divided into two sections.
The top section contains the SIP headers, and the
bottom section contains the body of the SIP
message, in this case, it is Session Description
Protocol (SDP) [11] information. The headers are
separated from the body by a blank line. We can
observe different fields that carry on different
information. “From” field provides the identity of
the request’s initiator whereas the “To” field
provides the identity of the intended recipient of the
request. The “Call-ID” field gives a globally unique
identifier to distinguish specific invitations or
multiple registrations of the same user. “CSeq”,
which stands for “Command Sequence”, is required
in the request messages and in response messages. It
provides the request method with a unique decimal
sequence number. If new requests are sent by the
user with the same Call-ID, but different methods or
content, the “CSeq” value has to increase by 1 to let
the other network entities know that they are
receiving a new message. Otherwise, the entities
will think they are receiving a retransmission. Note
that SIP works with both UDP and TCP, so when
working with UDP there are defined some timers to
retransmit messages. A full description of every
field in this and other messages can be found in [4].

The UA 2 answers with an informative message
(“180” Ringing) to signal that the INVITE message
has reached the destination but it has not still been
accepted. When the destination user goes off hook,
the OK message is sent. Upon reception of the OK
message, the initiator issues an ACK message and
establishes the voice communication channel. Once
the UA 2 finishes the conversation, a BYE message
is sent back to the caller, which hangs up and sends
an OK message to indicate the called party that the
session has been successfully closed.

Figure 3, on the other hand, uses proxy servers as
well as a redirect server to route the call. The
redirect server is shared between both proxy servers.
The forward path is found by means of the “302
Move Temporarily” messages, which contain the
URI of the server that should be contacted to reach
the destination; in the first case it is the remote
user’s proxy server. The remote proxy server asks
the same redirect server for the location of the
callee, and finally the invite is forwarded to the real
destination. The reason for passing through the
remote proxy server is a matter of choice. If both
users are local subscribers, the first time the redirect
server is contacted, it could respond with the real IP
address of the destination. Nevertheless, if the
registration process involves the storage of the
address of the proxy server that processed the called
party’s registration, the flow of messages occurs as
it is shown in Figure 3.

1. INVITE

2. 180 Ringing

3. 200 OK

4. ACK

5. Voice (RTP)

6. BYE

7. 200 OK

UA 1 UA 2

Rings

Hangs up

dials

 Figure 3. Proxying call flow

If a proxy server wants to be in the call path, it can
insert a “Record Route” header. Moreover, loops are
prevented using “Via” headers, which provide a
history of the message’s path through the network
or networks. “Via” headers are used to determine
the routing for SIP responses. If two, three, or more
“Via”s are listed, their sequence is significant. As
messages are sent through proxy servers, each
server adds a “Via” line to indicate that the message
has been through that proxy. The rest of the
standard headers are fully described in [4], and we
encourage the interested reader to dig in the
references as well as any other good source of
information to obtain a whole picture of the flow of
messages that constitutes the SIP protocol.

1.3. Registration

The registration process allows UAs to be
authenticated in the SIP network as well as being
located by other SIP agents. It is also the main
procedure to implement mobility features. The UA

sends a REGISTER message to the proxy server,
which will forward the message to the registrar.
Upon correct registration, an OK message will come
back to the UA. The REGISTER message can
specify more than one address, so the OK response
includes a “Contact” header with all current
bindings approved. These bindings have an
expiration timer, meaning that the registration
process must be refreshed. More details about the
registration process can be found in the SIP RFC
[4].

2. SIP and mobility

The IETF has developed IP mobility support for
IPv4 [13] and IPv6 [12], which provides for
transparent mobility, in that they hide the change of
IP address when the mobile host is moving between
IP subnets. On the other hand, the application layer
protocol SIP supports by default the ability of end
users to originate and receive calls on any terminal
in any location, which is often called “terminal
mobility”. Some studies have come up to analyze
the pros and cons of both mobility systems [1][2]
[3]. Mobility in IPv4 requires changes in the IP
stack of non-mobile hosts to allow route
optimization [17]. Another issue of the mobility
protocols is that the mobile host needs a permanent
home IP address, which obviously might be a
problem due to the expected address exhaustion in
IP version 4. Nevertheless, mobility at the IP layer
provides transparent mobility which is needed to
keep TCP connections alive as the user is moving.
H. Schulzrinne and E. Wedlung [1] suggest to use
mobile IP solutions for long-lived TCP connections
but to use a more appropriate mobility support for
real-time communication based on UDP.

2.1. Terminal mobility

When a user turns off his device, moves out to
another place and turns it on again, the SIP device
re-registers with its “home” registrar. This process
is done every time the device obtains a new IP
address and it is known as “pre-call mobility” [1].
If the user has a call session ongoing, and the device
changes its IP address, the device issues a RE-
INVITE message1 which is routed accordingly to
the destination UA. Upon reception of the RE-
INVITE message, the correspondent UA starts
sending its session packets to the new IP address.

2.2. Session mobility

Session mobility allows a user to maintain a media
session even while changing terminals [1]. This is
usually implemented by means of “third party call

1 RE-INVITEs are simple INVITEs, there are no
formatting differences. We talk about a RE-INVITE
when the party issues another INVITE message.

 INVITE

 Trying
INVITE

Moved Tmp

INVITE

ACK

ACK

UA 1 UA 2PS 1 RS PS 2

INVITE
 Trying

Trying

Moved Tmp

INVITE

Ringing
Ringing

Ringing OK
OK

OK

ACK
ACK

ACK
Conversation

BYE
BYE

BYE

ACK
ACK

ACK

control” (TPCC) agents [7] as well as “call
transfers” [8].

Figure 4 shows how to move the session from an
old device (the TPCC column) to a new device
(NEW_DEV column), using TPCC methods. In the
figure, the TPCC agent sends an INVITE message
to the new device, and it transmits the session
description parameters (SDP parameters that the
NEW_DEV has transmitted with its OK message) to
the correspondent host, using another (RE-)INVITE
to carry on the information. As a result of this
exchange, the new device can hold the previous
session. One disadvantage of this method is that the
TPCC agent (or the original session participant) has
to remain involved in the session, as it will be
contacted to change or terminate the session. The
TPCC agent simply acts as proxy for the SIP
signalling and the media sesion is redirected using
INVITE messages.

Figure 4. Session mobility with third-party call
control.

In Figure 5, the session is moved out using a
REFER request message [8]. The old device simply
sends a REFER request to the correspondant host,
indicating that it should contact the new device. The
correspondant host then negotatiates a session using
the regular INVITE exchange. The old device closes
the old connection when the session is effectively
transferred.

 Figure 5. Session mobility using call transfer

2.3. Personal mobility

Personal mobility allows addressing a single user
located at different terminals by the same logical
address [19]. This can be achieved by using ENUM

[20] or using multiple registrations. The registrar
needs to be able to recognize different devices as
belonging to the same person.

2.4. Service mobility

Service mobility refers to the capability of roaming
around and at the same time making sure that the
mobile host maintains the Quality of Service (QoS)
of the ongoing sessions as well as minimizing the
loss of transient data during handoffs, and satisfying
the delay requirements of the multimedia
application [1]. In a simple way, service mobility
allows users to maintain access to their services
even while moving or changing devices and
network service providers. These services, besides
QoS related ones, can be address books, call logs,
media preferences, buddy lists and incoming and
outgoing handling instructions (e.g. speed dials).
One solution for service mobility is to have the user
carry this information with him, as it is explained in
[1].

3. Mobility support in VOCAL

The “Vovida Open Communication Application
Library” (VOCAL) [21] is an open source project
targeted at facilitating the adoption of VoIP in the
marketplace. VOCAL provides the development
community with software and tools needed to build
new VoIP features, applications and services. The
software in VOCAL includes a SIP based redirect
server, feature server, provisioning server2 and
different marshal proxies, which are the typical
proxy servers cited in the SIP protocol.

The VOCAL mobility support has been developed
by Rajarshi Chakraborty and Kishore Mundra, at
the Indian Institute of Technology, Kharagpur
(India) (http://www.iitkgp.ernet.in/). The patch can
be downloaded from [9]. The stable 1.5.0 version
of VOCAL has been modified for this purpose. As
the time of this writing, only patches are provided
but it is expected that after a revision of the code,
the VOCAL developers will merge it on the main
source tree. Besides the modification of the UA, the
proxy server (“marshall server” in VOCAL
vocabulary) and the redirect server have also
suffered modifications.

The mobility setup has only been tested in an IPv4
environment. For that purpose, the authors had to
tweak the wireless driver of the mobile host to
facilitate dynamic change of IPv4 addresses across
access points in different subnets. Once the wireless
driver reports that it has been associated with
another access point, the mobile host should address

2Provisioning refers to the way VoIP users are
managed in the network. VOCAL provides two
ways of administering users. One based on web
pages and the other based on Java.

BYE

INVITE

REFER
NEW DEV

NEW DEV OLD DEV CH

ACK
ACK

OK

INVITE
OK

INVITE

NEW DEV TPCC CH

a new DHCP [16] query to obtain a new IP address,
provided a change of subnet had occurred.

It is worth noting that in any network, a SIP end
system needs to establish two SIP-related
configuration parameters, namely the local registrar
and whether there is an outboud proxy. Usually both
the local registrar and the outbound proxy are co-
located so the only parameter that the UA typically
needs to have configured is its domain name, which
can be used to locate the SIP proxy.

The mobility design is based on the “outbound
proxy interception” method defined in [24]. We
define a “travelling user” or “visitor” as a SIP
endpoint that is visiting a domain other than the
domain indicated in its SIP URI. The concept
surrounding the “outbound proxy interception”
method can be explained as follows. The outbound
proxy of the visitor UA intercepts the registration
message as well as any other outbound request and
it changes the “Contact” address field to its own
address. Then it forwards the registration request to
the home registrar server. In order to identify future
income request, the foreign outbound proxy server
also needs to create a new temporary user identifier
for the visiting UA. This identifier should be unique
between all the possible visiting nodes. Thus, [24]
defines a “canonical visitor's name”, though any
other ramdom identifier could also be used. The
canonical visitor's name is made of the
concatenation of the visitor's address and the proxy's
domain, such as “alice%
40wonderland.com@visited.net”, where the simbol
“%40” stands for the URL-scaped “@”
representation.

In a nutshell, the UA has made a registration on its
home network with the IP address of the visiting
outbout proxy, and it has also made a foreign
registration with a canonical visitor's name in the
foreign network, using the recently aquired IP
address. As it is explained in [24], this approach has
the advantage that it forces incoming requests to use
the proxy server and thus solves the typical firewall
problem. Besides, if the UA changes of IP address
multiple times inside the same foreign network, the
location update only has to travel locally, and the
home proxy is not disturbed, improving the latency
of the communication.

A rogue user can easily override the registration of
the visiting UA. In order to make this registration
process more secure, the visited proxy server can
accept the registration of the mobile user only if the
registration on its home network has finished
successfully. Therefore, the VOCAL
implementation waits for a “200 OK” message
coming from the home registrar before executing
the UA's temporary registration on its own SIP
network. The architecture of VOCAL has been
slightly modified to reflect this behaviour. Note that
this delay does not solve the problem, but at least
the rogue UA will have to implement a kind of

proxy server behaviour to lie about the home
registration process. At the time of this writing,
there is not implemented any temporary
authentication for foreign network registrations.

When the visitor needs to send a RE-INVITE
message to its peer, it has to pass through the
foreign proxy server. This is how the VOCAL
architecture has been designed, as long as the UA
has got a SIP proxy server configured. Hence, when
the user is in the foreign network the foreign proxy
server becomes the (temporary) local SIP proxy
server for the mobile host.

Althought [1] explains the usage of the RE-INVITE
method as if they could be sent directly to the
correspondant host, R. Chakraborty and K.
Mundra, the authors of the mobility implementation
for VOCAL, have not taken that position. Sending
the message directly would require the identification
of the IP address of the other participant from the
SIP headers which is not a standard behaviour.
Trying to bypass the SIP server does not agree with
the VOCAL philosophy (if you have a proxy server
configured, you must use it). This could also bring
problems with networks protected by firewalls.

The flow of SIP packets varies depending on the
direction of the call setup. When the mobile UA
sends a message to the other participant, this
message is sent directly to the destination without
travelling through the home network. The (foreign)
outboud proxy server identifies that the user is a
visitor and since the user is registered using the
temporary canonical name, the proxy remembers
that the “From” field has to be reset to the real
identity of the UA. For example, if the UA has the
canonical name “alice%
40wonderland.com@visited.net”, the foreign proxy
server has to replace this identifier with
“alice@wonderland.com”.

From messages coming from a correspondant UA to
the mobile UA, the messages take a triangular
routing path. The correspondant UA sends the
message to the home network of the mobile host, as
the correspondant only knows the existence of the
mobile UA as “alice@wonderland.com”. Thus, the
home network using the normal registration
information forwards the message to the foreign
proxy server where the mobile UA is currently
located. Finally, the foreign outbound proxy server
delivers the message to the mobile UA.

In short, foreign outbound proxies must be modified
to forward the SIP REGISTER messages from a
visiting mobile UA to its home network. The
VOCAL marshall server does not verify the
authentication for any SIP message coming from a
“visitor”. However, the home marshall server would
verify the authentication of the REGISTER
message, as the user is not a “visitor” to itself.
Hence at least in the registration process it is
ensured that the “authentic” visitor is sending the

SIP REGISTER message and not some
masquerader. Another option could have been that
the foreign marshall server returned back a
temporary password to the “visitor” after
temporarily registering it. The foreign marshall
server would still have to be modified to be able to
check a visitor’s authentication, in which case the
“visitor” would use this newly obtained temporary
password. This would eliminate the need of the
foreign marshall server to always forward the
visitor’s SIP REGISTER messages to its home
VOCAL system. R. Chakraborty and K. Mundra
have made a detailed description of all these
alternatives in the implementation notes that come
with the VOCAL mobility patch [9].

3.1. Activation of mobility features

To use the mobility implementation capabilities, the
mobile flag of the graphical user agent (GUA) has
to be set to 1. Moreover, there are two different and
exclusive ways of looking for foreign proxy servers.
Depending on the activation of the “DNS” flag, the
system can use either DNS queries to locate SRV
records [10] that inform about the actual IP address
of a proxy server, or reading from a configuration
file the mappings of IP address range to IP address
of the (foreign) proxy server.

The usage of the DNS flag requires the presence of
a SRV record for the SIP proxy servers in the DNS
servers of the domains involved, where the user
plans to use this feature. The details for this kind of
location of SIP servers are given in [18]. Note also
that the DNS SRV query requires the domain name
to be set in the mobile host, which can be achieved
using the –D option of the DHCP client.

In case the user switches on mobility and if the DNS
flag is set to 0, the GUA will take the proxy server
from the list of domains in another new
configuration tag called “Domain”. The “Domain”
tag maps domains to proxy servers. The format of
the “Domain” flag is shown in Figure 6:

 Domain String [IP-Range]/Proxy1$DomainName/Proxy2$....

Figure 6. “Domain” format option

For example, if a mobile user had planned that he
would roam between “it.uc3m.es” domain and
“fis.uc3m.es” domain in advance, he or she could
have configured the following tags in the GUA
configuration file showed in Figure 7:

 Mobile String 1
 DNS String 0
 Domain String
 it.uc3m.es/163.117.140.2$fis.uc3m.es/163.117.234.72

 Figure 7: GUA mobile configuration options

Where “163.117.140.2” corresponds to the SIP
proxy server of the “it.uc3m.es” domain and
“163.117.234.72” corresponds to the same SIP
server but located on the “fis.uc3m.es” domain. The
“Mobile” tag switches on the mobility features.

4. SIPSet extensions to support mobility

SIPSet is a user agent with a graphical user interface
front-end that works with the SIP stack of VOCAL.
SIPSet can be used as a soft phone, to make and
receives phone calls from a standard personal
computer. It currently supports both IPv4 and IPv6
protocols.

The SIPset application consists of two pieces, the
user interface, called “sipset”, and the call control
and media application, called “gua”. in order to
allow multiple user interfaces to be attached to the
“gua”, the “gua” communicates with the “sipset” via
a protocol which runs over named pipes (also
known as FIFOs) [22].

On start-up, the program reads a default
configuration file from the standard installation
path, later on it tries to read any local configuration
file, and finally it writes the configuration values
that have been read plus any changes that the user
might do through the windowed interface to a local
configuration file, usually located at
“$HOME/.sipset/gua.conf”. Every time the user
modifies a value on the graphical interface, the new
configuration is saved and if the change involves
any action regarding the GUA, a corresponding
message is sent through the communication pipe.

Our implementation has consisted in the addition of
a new item under the “settings” menu entry, named
“Mobile configuration”, which opens a new window
with all the flags that are needed to configure the
mobility support of the GUA. This new interface
has been developed using “glade” [23]. The new
configuration windows are showed in figures 8 and
9.

Due to the fact that SIPset is only a wrapper for the
command line GUA3, the only behaviour that had to
be implemented, apart for the event-driven
programming, was the reading and writing
functions that operates when a configuration value
changes. The total number of lines of the patch that
has been generated is over 1.100 lines.

Figure 8 shows the main SIPset window. You can
observe the new item of the “settings” menu, which
stands for enabling mobility configuration options.
Figure 9 shows the mobility configuration window,

3 The UA is called GUA because it is used by the
SIPSet, which is the actual graphical interface.
Hence the GUA is not a graphical interface on its
own, though we recognize that the name is tricky.

where you can configure the previously explained
tags.

 Figure 8. Main SIPset window

 Figure 9. Mobility configuration window

5. Conclusions and future works

This paper shows the current status of the mobility
support for the Vovida Open Communication
Library (VOCAL) open source project. Mobility in
SIP can be achieved efficiently at the application
level without imposing requirements on external
protocol elements [1][2][3]. This document shows
the modifications that have been implemented in
VOCAL in order to support mobility. These
modifications range from the addition of new code
to configure mobility in the UA, to structural code
changes that must be done on the proxy server to
forward RE-INVITE messages that come from un-
authenticated sources. The author of the paper has
also implemented an extension to the graphical UA
of VOCAL, called SIPset, to allow an easy manner
of configuring the different mobility options. These
(exclusive) options are based on the utilization of
DNS infrastructure to discover foreign proxy
servers [10], as well as on statically pre-configured
information about such servers for each foreign
domain.

VOVIDA software is constantly improving. Newly
defined SIP messages still have to be implemented
[5][6] in VOCAL. New efforts on the mobility
features should be directed to improve the
capabilities of the third party call control agent,
called “back to back UA” (B2BUA), as well as
improving the way the UA detects IP changes,
which is currently done by polling.

Long term work should be directed to the study of
the interaction of SIP mobility with IP mobility.
More detailed research on the delays and behaviour
of such joined mechanisms, especially in 3GPP
networks [3], are still needed.

Acknowledgments

I would like to name, firstly the authors of the
mobility support for VOCAL, Rajarshi
Chakraborty and Kushore Hundra, because their
work has made possible that mine comes to light.
Secondly, I would be evil if I did not cite the people
who have been supporting my research all these
years. Mainly, I would like to thank Alberto Garcia,
Marcelo Bagnulo and Ignacio Soto. Special thanks
to Manuel Urueña for reviewing the first version of
this paper and making good suggestions.

References

[1] Henning Shulzrinne, Elin Wedlund,
“Application-Layer Mobility Using SIP”, Mobile
Computing and Communications Review, Volumen
1, Number 2.

[2] Elin Wedlund, Henning Schulzrinne, “Mobility
Support using SIP”, Second ACM/IEEE
International Conference on Wireless and Mobile
Multimedia (WoWMoM ’99)

[3] Ashutosh Dutta, Shinichi Baba, Hennin
Schulzrinne et al., “Application Layer Mobility
Management Scheme for Wireless Internet”,
3Gwireless 2001,(San Francisco), pp. 7, May 2001

[4] M. Handley, H. Schulzrinne, E. Schooler and
Rosenberg, “SIP: session initiation protocol”, RFC
2543, IETF 1999.

[5] J. Rosenberg, “A Session Initiation Protocol
(SIP) Event Package for Registrations”, RFC 3680,
IETF March 2004

[6] J. Rosenberg et al., “SIP extensions for instant
messaging”, RFC 3428, IETF December 2002.
[7] J. Rosenberg, J. Peterson, H. Schulzrinne and G.
Camarillo, “ Best Current Practices for Third Party
Call Control (3pcc) in the Session Initiation
Protocol (SIP) “, RFC 3725, April 2004

[8] R. Sparks, “The Session Initiated Protocol (SIP)
Refer Method”, RFC 3515, IETF April 2003.

[9] VOCAL Bugzilla entry number 765:
http://bugzilla.vovida.org/bugzilla/show_bug.cgi?id
=765

[10] A. Gulbrandsen, P. Vixie and L. Esibov, “A
DNS RR for specifying the location of services
(DNS SRV)”, RFC 2782, IETF February 2000.

[11] M. Handley and V. Jacobson, “SDP: session
description protocol”, RFC 2327, IETF April 1998.

[12] D. Johnson and C. Perkins, J. Arkko, “Mobility
support in IPv6”, Internet Draft (-24.txt), IETF June
2003.

[13] C. Perkins, “IP mobility support”, RFC 2002,
IETF October 1996.

[14] Luan Dang, Cullen Jennings and David Kelly,
“Practical VoIP using VOCAL”, O’Reilly, July
2002, ISBN: 0-509-00078-2

[15] H. Schulzrinne, S. Casner et al., “RTP: a
transport protocol for real-time applications”, RFC
1889, IETF January 1996.

[16] R. Droms, “Dynamic host configuration
protocol”, RFC 2131, IETF March 1997.

[17] C. Perkins and D. Johnson, “Route
optimization in mobile IP”, Internet Draft, IETF
February 2000.

[18] J. Rosenberg, H. Schulzrinne, “Session
Initiation Protocol (SIP): Locating SIP servers”,
RFC 3263, June 2002

[19] H. Schulzrinne, “Personal mobility for
multimedia services in the Internet”, in European
Workshop on Interactive Distributed Multimedia
Systems and Services (IDMS), Berlin - Germany,
March 1996.

[20] J. Peterson, “Enumservice registration for
Session Initiation Protocol (SIP) Address-of-
record”, RFC 3764, IETF April 2004.

[21] Vovida Open Communication Library
(VOCAL), http://www.vovida.org

[22] Bob Stearns, UCNS Senior Consultant, “Unix
named pipes (FIFOs)”,
http://www.eits.uga.edu/tti/Computer_Review/Wint
er95/UNIX.html

[23] Glade: the GTK+ user interface builder,
http://glade.gnome.org/

[24] H. Schulzrinne, “SIP Registration”, Internet
Draft, IETF October 2001.

