
Multi-Agent Based Chess Move Generator System:  
Taking into Account Local Environments 

 
Juan F. Rodríguez Hervella 
Univ. Carlos III de Madrid 

Av. Universidad, 30, Edif. Torres Quevedo. E-28911 Leganés (Madrid)  
Tel: (+34) 91-624-8859 
E-mail: jrh@it.uc3m.es 

 
Abstract 

 
Chess has spawned a great deal of successful research in the artificial intelligence (AI) community. The strength of 
some chess programs can be compared to top-level human players. Nevertheless, most of the AI research has been 
focused on the refinement of evaluation functions which are used to search the NP-complete solution space. Some 
optimizations have also been made to the arrangement in which possible moves are examined by the search 
algorithm. In this article we take a nouvelle approach to the generation of chess moves with the help of multi-agent 
based systems. We design a multi-agent system which represents the pieces of a chess battlefield and we feed the 
search algorithm with the most promising move(s) from the point of view of the individual agents. Thus, we take 
into account the individual decisions (tactics) to define the strategy, as well as cutting out the search space. We plan 
to make a prototype implementation of the multi-agent based chess move generator system (MAB-CMGS) using the 
FIPA-OS architecture to test the overall system behaviour and achievable chess power. 
 

1. Introduction 
 
Strategy can be defined as a coordinated plan of 
actions for reaching a particular goal [1].  A strategy 
always relies on the possibility of having a view as 
global as possible of the current situation, and 
making sure that the resources will perform the 
desired actions.  Strategy is a synonym of “action 
plan” or “intelligence”, which can be viewed as the 
set of steps that an agent carry out to solve a 
problem. 
 
Although chess is a game of “perfect information”, 
which means that both players are aware of the 
entire state of the game at all times, the search space 
is so huge that brute-force techniques 1can not be 
directly applied to it. Thus we usually talk about the 
“intelligence” of chess programs because they have 
to take decisions based on the current state, in a 
similar way human players do, because both humans 
and computers can not examine all the possibilities 
to let them choose the best move. 
 
The traditional methodology of AI has consisted in 
the decomposition of intelligence into functional 
information processing modules whose 
combinations provide overall system behaviour [2]. 
In this model, the reasoning process becomes trivial 
once the search space can be managed and the 
domain of knowledge is well understood. 
 
AI solutions for playing chess are founded in the 
hope that “intelligence” will somehow emerge from 
good heuristic evaluation functions. The search 
                                                           
1 a brute-force search consists of systematically 
enumerating every possible solution of a problem 
until a solution is found, or all possible solutions 
have been exhausted. 

space is reduced by replacing the full problem with a 
simplified version. Rather than computing the full 
tree of all possible moves for the remainder of the 
game, a more limited tree is computed, with the tree 
being pruned at a certain number of moves, and the 
remainder of the tree being approximated by the 
evaluation function. 
 
On the other hand,  some AI methodologies have 
faced the chess battlefield from a totally different 
point of view [3]. These methodologies base the 
decomposition of “intelligence” into individual 
behaviour modules, whose coexistence and co-
operation let more complex behaviours emerge [2]. 
 
At the time of writing, both methodologies have not 
achieved yet the secrets of the “holy grail of AI” [2], 
which aims to adquire human level intelligence 
equivalence.  Regarding the chess problem, heuristic 
solutions have demostrated superior performance 
than individual decision processes [16]. 
 
In this paper we try to put together both ways of 
tackling with the chess problem, namely the 
heuristic based computation and the interaction of 
(chess) agents with the enviroment, in order to 
achieve a more precise resemblance of human chess 
players’ behavior. In the next section (section 2) we 
introduce the current chess programming tecniques. 
We continue with a section (section 3) devoted to 
the MAB-CMGS system description. Section 4 
outlines the prototype implementation that we plan 
to develope and we finish with some conclusions 
and future works in section 5. We hope to validate 
our statements when our first prototype comes to 
light. Until then, we plan to utilize incremental 
refinements until a complete and detailed description 
can be fully introduced. This paper should be view 
as the first of a series with the final objective of 
joining determinitic and behavioural based tools to 
simply create a grandmaster. 



2. Chess programming overview 
 
In order to play chess, a computer needs a certain 
number of software components. It needs some way 
to represent a chess board (Figure 1) in memory, so 
that it knows what the sate of the game is. It also 
needs rules to determine how to generate legal 
moves, a tecnique to choose the “best” move to 
make amongst all legal possibilities, and some way 
to compare moves and positions, as well as some 
sort of user interface [4]. In the following sections, 
we describe the most important functions of a chess 
program without explaining them all. We refer the 
reader to the bibliography to get a deeper 
understanding of the different methods. 
 

 
 Figure 1: Typical chess board 
 
It is also worth noting that the following concepts 
have already been applied to distributed 
computation, for example in the “chessbrain” project 
[8]. 
 

2.1. Move Generation 
 
A chess grandmaster thinks by “intuitively” 
selecting 2 or 3 moves and then analyzing them 
several moves deep.  Chess programs attempting this 
“selective generation” have generally failed, as it is 
extremely difficult to put a grandmaster’s intuition 
into a program.  The selective generation of moves 
is also known as “forward pruning”. 
 
Today nearly all programs use incremental (or 
complete) generation of chess movements, which 
consists on: 

• Finding all of the legal moves available in a 
position. 

• Ordering them in some way, hopefully 
speeding up the search by picking an 
advantageous order. 

• Searching them all one at a time, until all 
moves have been examined. 

 
The classification of moves is a fundamental 
strategy to improve the performance of the 
algorithm. Therefore, many programs generate 
captures first, often starting with those of highly 
valuable pieces. Some other methods are described 
in [4]. 

 
 

2.2. Searching algorithms 
 
We need to search the solution space basically 
because we are not smart enough to play chess 
without it. A really bright program might be able to 
look at a board position and determine who is ahead, 
by how much, and what sort of strategy should be 
implemented to drive the advantage to a win. 
Unfortunately, there are so many patterns and so 
many rules as well as exceptions, that it is not 
feasible for a computer program to obtain that 
knowledge. Hence, we look at searches as an easy 
way to “teach” the machine about relatively 
complicated tactics. Some efforts have been 
addressed to find alternatives to the searching 
methods, as it is explained in [1] and [15]. 
 
The basic idea underlying all typical chess search 
algorithms is the “minimax” principle [5]. The 
strategy behind the minimax algorithm is that the 
computer assumes that both players will play to the 
best of their ability. So, if the opponent has the 
choice of a bad move or a good move, the computer 
will have the opponent choose the good move. The 
player moving a piece tries to maximize his gain 
according to the evaluation function, the adversary 
tries to minimize it. The interplay of both intentions 
results in a way to explore the game tree. If the 
solution space of chess could be efficiently 
searched, we could use this algorithm to create a 
“perfect” player. Unfortunately, this exploration can 
not be achieved in a valid computational time. 
 
Improvements to make the minimax algorithm 
feasible have been developed, like Alpha-Beta 
pruning [6], and some other improvements to speed 
up the search are currently being applied, like 
ordering the moves and the iterative deepening 
alphabeta concept [7]. 
 

2.3. Evaluation functions 
 
While search techniques are pretty much universal 
and move generation can be deducted from a game’s 
rules and no more, evaluation requires a deep and 
thorough analysis of strategy. Some of the 
evaluation metrics commonly used are material 
balance, mobility and board control, development, 
pawn formations, and king safety [4]. It is still an 
open problem how to weight each one.  
 
Evaluation functions appear because we can not 
apply the minimax principle to its final 
consequences. Programs usually stop searching and 
assign a value to the last search node (up to date 
leafs). Good evaluation functions are mostly 
developed and improved using trial and error 
techniques. For a more detailed description of 
evaluation functions we refer the reader to the 
extensive bibliography available. 



3. Multi-Agent Based Chess Move 
Generator System (MAB-CMGS) 

 
To build a system that is intelligent it is necessary to 
have its representations grounded in the physical 
world [2]. The idea outlined in this paper relies on 
the emergence of more global behavior from the 
interaction of smaller behavioral units. As with 
heuristics, there is no “a priori” guarantee that this 
will always work. However, as it is been shown in 
[1], careful design of the simple behaviors and their 
interactions can often produce systems with useful 
and interesting “emergent properties”. 
 
We utilize the previous work done inside MARCH 
project [1] to create a chess program that is driven 
by the more promising moves that appear when a set 
of agents start interacting between them.  
 
The approach consists in viewing each chess piece 
as an autonomous agent, with its own behavior and 
its own perception area.   
 

3.1. The overall process 
 
Every chess piece has to communicate with the rest 
of the agents, both friends and enemies. Besides, the 
agents have to send the evaluation of its moves to 
their respective King agent, which controls the 
strategy of the game. The King agent implements a 
typical search algorithm to look up the chess space, 
using minimax and alpha beta techniques.  The 
agents simply inform the King agent, which 
ultimately is the agent in charge of deciding which 
move to make next, in order to advance the game. 
This is a totally different approach to the multi agent 
chess system described in [1], because we do not 
allow the agents to select the next move based on 
the agent’s assessments. The next move is based on 
a heuristic search with a limit on the number of 
branches, which depends on the information 
provided to the King agent. Thus we can think of the 
King agent as the “head of our soldiers”. 
 
The idea of examining a few moves in order to play 
chess was first stated by Mikahil Botvinnik. He was 
convinced that the only way for a computer to ever 
play grandmaster-level chess was to play like a 
grandmaster, i.e., examine only a few moves, but in 
a great depth and detail. We identify and implement 
the sort of high-level plans which a world class 
player might come up with during a game, with the 
help of a multi-agent system platform, as it will be 
explained later on.  Another variation regarding to 
the Botvinnck’s thoughts is that we do not aim to 
obtain the “best” move. The King agent dynamically 
decides which moves are the more promising to be 
searched based on the information provided by 
every agent. We even could end up in a situation 
where the agents’ evaluations were not enough to 
make any selection, which would mean that the 
algorithm would have to consider all the possible 
moves. 

 
At this point is not clear if the agent based selection 
of moves could be effectively applied for each ply2 
of the search algorithm, instead of only for the first 
move. We plan to test both approaches. 

3.2. The detailed process  
 
The multi-agent system is modelled following the 
description of [1] plus the introduction of the 
objectives that every agent needs to achieve. Hence, 
we face a similar testbed in which every place of the 
chessboard knows the chess piece that is lying on it 
and holds two values called “whiteStrengh” and 
“blackStrength”.  Every square also holds the two 
differences between these values, respectively called 
“whiteDiff” and “blackDiff”. In order to fully 
understand our genuine decision process, the 
algorithm which appears in [1] is directly copied 
here. Later on we explain the modifications we have 
made. 
 
The way a turn is played on [1] is the following: 
 

1. Asking each chess piece (agent) to 
a. Propagate a constant value on the 

places it directly threatens. 
b.  Inform the enemy’s pieces it 

directly threatens that they are 
threatened by itself. 

2. Asking each threatened pieces to propagate 
its material value (1 for pawns, 3 for 
knights and bishops, 4 for rooks, 10 for 
queen, and infinite for the king) on the 
places situated between itself and the pieces 
that threaten itself. 

3. Asking each piece to give a mark to each 
place onto which it could move. The mark 
is computed as follows: 

a. Initially the mark is whiteDiff or 
blackDiff, depending on the piece 
color. 

b. If there is any enemy piece on the 
place, its material value, 
multiplied by two, is added to the 
mark. 

c. The material value of each enemy 
piece it would threaten when 
located on this place is added to 
the mark, as well as the material 
value of each allied piece it would 
protect (except that of the king). 

d. Finally, the material value of the 
piece and the “whiteDiff” or 
“blackDiff” value of its place is 
removed from the mark. 

4. Choosing randomly a piece among the 
pieces whose mark are the greatest and 
asking it to move on the related place. 

 
Our approach extends and modifies this algorithm 
introducing a novel definition of the forth point. We 
                                                           
2 One ply is one move by one side 



have already stated that the actual movement is 
taken by the King agent based on a heuristic search. 
Hence, instead of choosing randomly a piece with 
the greatest mark to move on the related position, 
we just send the mark information to the King agent, 
which selects the movements with greatest marks to 
start the search algorithm. Upon timer expiration the 
King agent is forced to evaluate the most promising 
move, and it sends a message to the proper agent to 
make the move actually occur, and the turn is given 
to the correspondent player (opponent’s King agent) 
and finally the process starts again, having this time 
the “hot potato” on the other side. 
 

4. Implementation of MAB-CMGS in 
the FIPA-OS architecture 

 
We plan to make a first implementation of the 
concepts outlined in this paper using the FIPA-OS 
multi-agent platform.  FIPA is a non-profit 
association whose purpose is to “promote the 
success of emerging agent-based applications, 
services and equipment” [4]. FIPA’s goal is to make 
available specifications that maximize 
interoperability across agent-based systems. FIPA 
operates through the open international 
collaboration of member organizations, which are 
companies and universities that are active in the 
field.  Figure 2 shows the abstract FIPA architecture 
and emphasizes the different actual implementations 
of the FIPA’s standards. 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 2: FIPA architecture and its realization 
 
The FIPA abstract architecture [9] defines a high-
level organisational model for agent communication 
and core support (minimum support required) for 
communication such as a directory service, message 
transport service and namespace. The abstract 
architecture is neutral with respect to any particular 
directory service or the use of a particular network 
protocol for message transport. 
 
Figure 3 shows the overall agent platform defined 
by FIPA. It is worth noting that some parts of the 
platform are modelled as agents while some others 
are non-agents elements. The decision about where a 
specific feature belongs to has been made through a 
iterative process throughout the years. For instance, 
in early FIPA specifications the “Message Transport 
Service” (MTS) was modelled as an agent [14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3: FIPA reference model 
 
We have chosen to implement our system using a 
FIPA based agent platform because the FIPA set of 
standards focus on the specification of external 
communications between agents rather than the 
(internal) processing of the communication at the 
receiver. This is the same thing as saying that the 
FIPA specifications attempt to cover generalisations 
and high-level neutral abstractions. Thus, using a 
FIPA based platform allows us to assure that our 
development will be compatible and focused on 
inter-operability between different kinds of agents.  
 
In the following subsection we describe the concrete 
FIPA platform called “FIPA-OS”. Afterwards we 
describe the real state of the development of the 
MAB-CMGS system. 
 

4.1. FIPA-OS multi-agent platform 
 
FIPA-OS is an agent development toolkit and a 
FIPA compatible platform [13]. The FIPA standards 
aim to improve agent interoperability by providing 
standards for agent communication language (ACL), 
agent life cycle and how agents interface the 
platform management and directory functions [12]. 
FIPA-OS provides the basic high level 
communication and conversation management 
functionality, the ability to create tasks and subtasks, 
the basic platform services specified by FIPA 
(Agent Management System and Directory 
Facilitator, respectively spelled AMS and DF in 
short) as well as the lower level transport system 
that supports a set of transports such as RMI [10] 
and CORBA [11]. 
 
The AMS provides platform management 
functionality, such as monitoring agent lifecycles 
and ensuring a correct behaviour of entities within, 
and upon, the platform. The DF provides “yellow 
pages” services to other agents. 
 

Abstract Architecture 

Messaging Messaging Messaging 

Concrete realization: CORBA elements 

Concrete realization: Java elements 

ACL 

Components 

Agents 

Software

   Agent 

Agent 
Manageme
nt System 

Directory 
Facilitator 

(DF) 

Message Transport Service 
(MTA) 



FIPA-OS uses a stack-based layered design, where 
each agent consists of a number of components that 
are placed in a stack. The stack is used within the 
agent, and in addition a transport stack resides 
within the MTS. Figure 4 presents an abstract 
diagram of the FIPA-OS agent stack.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
             Figure 4: FIPA-OS architecture stack 
 
FIPA-OS consists of the task and conversation 
management components, messaging service and the 
transports. The platform components required by 
FIPA (AMS and DF) are implemented as agents, 
with the exception of the Agent Communication 
Channel (ACC) that handles inter-platform 
communications. More information about the 
platform structure can be obtained from the project 
home page at [13]. 

4.1.1. Installation instructions 
 
The latest package of FIPA-OS dates from 2003-03-
18. There is plenty of documentation about FIPA-
OS, for example the instructions concerning the 
installation of the platform can be found in [12]. 
 
There are some hardware requirements (Pentium 
166 Mhz processor, 64 Mbytes of memory and 4 
Mbytes of disk space), but the only software 
requirement consists in the availability of Java 
support (runtime environment and collection and 
swing classes). The FIPA-OS platform has been 
developed with Java 1.2.2, but we have not found 
any problem with the latest version of Java at the 
time of this writing, which is Java-1.4.2. The 
installation has been carried on a FreeBSD-4.10 
machine. 
 
The package comes with a self-extraction JAR file 
that contains the Java classes that take care of the 
process of installing the platform and starting the 
FIPA-OS wizard. It is enough to execute: 
 
 Java –jar FIPA_OSv2_1_0_Installer.jar 

Once the wizard shows up, you only have to choose 
the installation directory and you can safely accept 
the default values of the rest of the windows.  

The platform has the following directory structure: 

Path and filename Description 

\bat Script files for launching 
agents and configuration 

\certificates Security certificate keys for 
agents. Only used by RMI 
over SSL. 

\classes\ 

FIPA_OSv2_1_0.jar 

Compiled FIPA-OS core 
without diagnostic support 

\databases Default location where 
persistent databases will be 
stored by agents 

\imports\ Third-party components 
(e.g. Xerces) 

\src Source code 

\javadocs Documentation of classes 

\docs Distribution notes 

\docs\licenses License notes 

\tools Associated tools 

\profiles Agent profiles for each of 
the agents included in the 
distribution (AMS, DF) 

\examples Example ACL messages 

 

Once the installation wizard has finished, simply 
running the “bat\|StartFIPAOS” script and the 
system will turn up.  Figure 5 shows the look and 
feel of the platform. Both the AMS and the DF 
provide a graphical interface, as most of the example 
agents usually do. 

 
 Figure 5: FIPA-OS look and feel 

 

Figure 6 shows a more detailed view of the Agent 
Loader. It is recommended that the Agent Loader be 

Agent Layer 
Task Layer 

Conversation Layer 

Messaging Layer 

Profiles 

Parsers 



used to start all agents. This enables agents to be 
managed by a human user as required. Another 
advantage of using the Agent Loader is that the user 
can control the lifecycle of the agents at runtime. 
 

 
               Figure 6: Agent Loader 

Figure 7 shows the DF agent user interface. When 
the DF starts, it creates a graphical user interface to 
enable registration of the DF with other DF’s and 
vice-versa. This allows creating a chain of searches. 
The DF interface it is only activated by double-
clicking on the name of the DF agent. 

 
 Figure 7: Directory Facilitator GUI. 

Finally, the FIPA-OS platform comes with an agent 
implementation that gives the user a way to interact 
with DFs. It is possible to subscribe to a home 
platform DF and the gui will show the agents 
registered in the corresponding home DFs. It is also 
possible to retrieve information about the agents 
subscribed to remote DFs as well. Finally, the tool 
also supports the visualization of DF’s agent 
descriptions. Figure 7 shows the main window. 

 
         Figure 8: Swing DF GUI main window 

It is possible to download a tutorial for learning how 
to program your own agents from the official web 
page of FIPA-OS [13]. Through an incremental 
learning, from the simplest agent which does 
nothing to a simulation of auctions in a marketplace 
made of sellers and buyers, the tutorial enables the 
user to get the fundamentals of agent’s development 
in the FIPA-OS platform. 

4.2. MAB-CMGS implementation 
 
We are in the early steps of the implementation 
effort that implies the MAB-CMGS system. We 
hope to have a first functional version in a couple of 
months. Although we have talked about the role of 
the King agent as being the centralized figure who 
actually executes the chess moves and decides 
which move seems to be the best, these actions 
could be performed by any other type of agent. We 
think that the figure of the King is the best one to 
represent the head of the army and that it fits very 
well with the mythology surrounding this ancient 
game.  On the other hand, if we implemented the 
King agent as it is been stated, we would have to 
construct an agent with two totally different 
behaviours, one as being just another piece of the 
game, and the other one as being the commander of 
the troops. Thus, we think that it is better to 
introduce the figure of the “God” agent, which will 
take over the functions of the analytical search and 
will perform the actual moves based on the 
information provided by the rest of the agents, 
including the information provided by the King 
agent which will stand up just as any other agent, 
with it is local perception of the environment and its 
own evaluation of its moves. 

5. Conclusions and Future Works 
 
This paper introduces the novel idea of having into 
account local decisions and a local perception of the 
environment in order to narrow the search space of a 
program that wants to play chess in a similar way 
human beings usually do.  The objective 
surrounding the idea is to utilize local evaluations to 
improve the efficiency of the minimax search. This 
is achieved by the reduction of the number of 
branches that the search algorithm has to take into 
consideration. Hence we construct which has been 
call a Multi-Agent Based Chess Move Generator 
System. 
 
Human beings intuitively select a couple of 
interesting moves and later start a deep thinking to 
evaluate which of the selected moves is the best one. 
Human beings do not examine all possible moves, 
because we are “intelligent” enough to automatically 
discard those moves that are not useful at all. 
Although previous research in this field had 
concluded that machines can not emulate this human 
behavior [15], we rely on the key concept stated in 
[1], which is that strategies can emerge from tactical 
behaviors. 



We are positive that commonly used search 
techniques are not enough to make a very strong 
chess player program. This is due to the following 
facts: 

• Evaluation functions are heuristics: we can 
not cope with the complete search tree in a 
reasonable amount of time, so we are force 
to guess which position seems better. 

• Time constrains: we are bound to the time 
we have to play the game, so it is a waste of 
time analyzing all plies of a given position, 
but we are force to do so in order to not 
eliminate a (possible) winner subtree. 

• Machines play overly cautious games: the 
minimax principle states that both players 
should make their best moves. That implies 
that machines do not take risks to deceive 
the opponent, though most of the times the 
opponent would be teased. If the computer 
has to decide between either making a 
move that forces a draw, or making a (bad) 
move that could let it win if the opponent 
made another mistake, it will always play 
conservative. 

 
On the other hand, we combine both analytical and 
behavioral methods to play chess with the hope that 
it will make the computer player a more robust 
opponent. We do not have analytical results yet but 
we think that a combined solution has the following 
benefits: 

• Careful design of simple behaviors and 
their interactions can often produce systems 
with useful and interesting emergent 
properties [2]: we use these “expectations” 
to feed the search algorithm to narrow the 
set of possible moves to be considered. 

• Improving the response time and obtaining 
a kind of adaptation to the game style: in 
fast games we could rely on the best move 
the agents select, and in slow time controls 
we could dynamically change the number 
of moves to take into account, especially in 
complex positions. 

• Human player behavior equivalence: local 
agent decisions can make computers play 
as human players would do, using tricks 
and playing risky even if the selected move 
is worse than playing for a draw. This 
means that the influence of the environment 
can guide to a suboptimal strategy, but that 
is what humans players normally do. 

 
It is worthwhile remembering that we do not rely 
either on analytical-only based tools or on agents 
based decisions on their own. We try to get the best 
of both worlds to improve chess programs where 
they look weaker than humans. 
 
After releasing the first stable implementation, we 
plan to test the MAB-CMGS with both human and 
computer players. We are sure that the local agent 
decisions and some other variables will have to be 
tuned, as it is not realistic to think that the first 

implementation will beat Kasparov. We do not aim 
to make that, instead we are focused on studying the 
combination of local decisions in a restricted 
perceived environment with a global strategy driven 
by an agent with a more complete view and 
knowledge of the domain. We would also like to 
investigate the influence of local decisions in the 
definition of global strategies in other domains (as 
social domains), which are often analyzed “a 
posteriori” and thus are likely to be inaccurate.  [1] 
demonstrates that most of the plans that we use are 
partially built by us and partially built by our 
immediate environment. We conclude that the 
environment should also be considered when 
playing chess games and we further refine the work 
begun within [1]. 
 
References 
 
[1]  Alexis Drogoul, “When Ants Play Chess (Or 
Can Strategies Emerge From Tactical Behaviours)”, 
1995. 
 
[2] R. A. Brooks, “Elephants Don’t Play Chess”, 
USA Robotics and Autonomous Systems (1990), 
MIT Artificial Intelligence Laboratory, Cambridge, 
 
[3] Brief chess history reference: 
http://www.cs.nott.ac.uk/~gxw/chesshis.html 
 
[4] Good chess programming article with a Java 
example implementation: http://www.GameDev.net, 
“Chess programming Series”. 
 
[5] Minimax search:  
http://www.xs4all.nl/~verhelst/chess/search.html 
 
[6] Alpha Beta pruning:  
http://www.cs.mcgill.ca/~cs251/OldCourses/1997/to
pic11/ 
 
[7] Iterative Deepening Alpha Beta pruning: 
http://www.seanet.com/~brucemo/topics/iterative.ht
m 
 
[8] ChessBrain project: http://www.chessbrain.net/ 
 
[9] FIPA Abstract Architecture Specification. 
FIPA00001. Foundation for Intelligent Physical 
Agents (2000). 
 
[10] RMI: http://java.sun.com/products/jdk/rmi/ 
 
[11] CORBA:  
http://www.cs.wustl.edu/~schmidt/corba.html 
 
[12] FIPA-OS Developer Guide: 
http://www.emorphia.com/research/about.htm 
 
[13] FIPA-OS Tutorial 
http://www.emorphia.com/research/about.htm 
 
[14] S. Poslad and P. Charlton, “Standardizing 
Agent Interoperability: The FIPA approach”, Multi-



Agent Systems and Applications, 9th ECCAI 
Advanced Course, Prague, Czech Republic, July 
2001. 
 
[15] P. W. Frey, “An Introduction to Computer 
Chess”, in “Chess Skills in Man and Machine”, 
Springer-Verlag, New York, 1977. 
 
[16] Deep blue match:  
http://www.research.ibm.com/deepblue/ 


