
3URMHFW�1XPEHU� ,67�����������

3URMHFW�7LWOH� ������������������������������/DERUDWRULHV�2YHU�1H[W

�������������������������������*HQHUDWLRQ��1HWZRUNV

'HOLYHUDEOH�7\SH� 3�±�SXEOLF

&(&�'HOLYHUDEOH�1XPEHU� IST-1999-20393/UPM/WP3.1/DS/P/1/00

&RQWUDFWXDO�'DWH�RI�'HOLYHU\�WR�WKH
&(&�

M06 (31-May-2001)

$FWXDO�'DWH�RI�'HOLYHU\�WR�WKH�&(&� 31-May-2001

7LWOH�RI�'HOLYHUDEOH� Requirements and guidelines for distributed
laboratories application migration

:RUNSDFNDJH�FRQWULEXWLQJ�WR�WKH
'HOLYHUDEOH�

WP 3

1DWXUH�RI�WKH�'HOLYHUDEOH� R – Report

$XWKRU�V�� Eva Castro (UPM), Joaquín Salvachua (UPM),
Alberto García (UC3M), Carlos Ralli (TID), Ruth
Vazquez (TID), Jacinto Vieira (UEV)

(GLWRU� Tomás P. de Miguel (UPM)

$EVWUDFW� This document provides guidelines for migrating
applications and services inside distributed
laboratories. The porting section includes the
evaluation of strategies, the set up of dual-stack
communication framework and the adoption of new
communication libraries. The document provides
evaluation mechanisms and review of some concrete
application porting examples.

.H\ZRUG�/LVW� LONG, IPv6, Next Generation Networks, Advanced
Network Services, Sockets API

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 2 of 68

([HFXWLYH�6XPPDU\

One important step in the transition from IPv4 to IPv6 is the migration of applications. The
transition does not require strong coordination with network migration. Only an small
experimental environment should be required to test applications over the new environment.
Only during the service deployment phase should be necessary to coordinate activities with
network administrators to minimize the number of intermediate dependencies.

This document aims to provide requirements and guidelines for migrating applications and
services inside distributed laboratories.

Different sites have different constraints. Sometimes the transition is demanded because of the
lack of network addresses, and sometimes the site requires the use of new features provided
by IPv6. The IPv6 specification requires 100% compatibility for the existing protocols and
applications during the transition.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 3 of 68

TABLE OF CONTENTS

1. INTRODUCTION 5

1.1 Scope of the Document 5

1.2 Relationship with the Overall Project Objectives 6

1.3 Technical Base 6

2. SCENARIOS AND STRATEGIES FOR GLOBAL MIGRATION 8

2.1 Other porting considerations 11

2.2 Porting application modules 11

2.3 IPv4 to IPv6 application reengineering 12

2.4 Solutions without sources 14

3. COMMUNICATION APIS 15

3.1 Porting of C programs 15
3.1.1 Berkeley socket interface 15
3.1.2 Winsock interface 20

3.2 Porting of C++ 27
3.2.1 Case of study 27

3.3 Migration of SOCKS based applications 29

3.4 Porting of Java 32

3.5 Scripting language services 34
3.5.1 Perl language 35

4. EXAMPLE OF IPV6 APPLICATION PORTING: MGEN 36

4.1 Configuring reception socket 37

4.2 Joining/leaving multicast groups 38

4.3 Sending routing headers 40

4.4 Sending hop by hop and destination options 41

4.5 Sending source address 43

4.6 Receiving extension headers 43

5. NEW APPLICATIONS DEVELOPMENT 47

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 4 of 68

6. EVALUATION OF SERVICES AND SCENARIOS 48

6.1 Stress tests 48
6.1.1 Tests definition 48
6.1.2 TCP behaviour 49
6.1.3 UDP Rate-limit 49
6.1.4 UDP Delay 49
6.1.5 UDP Jitter 49
6.1.6 Further considerations 50

7. CONCLUSION 51

8. GLOSSARY AND ABBREVIATIONS 52

9. REFERENCES 53

A. APPENDIX A: BASIC SOCKET INTERFACE EXTENSIONS FOR IPV6 54

A.1 New Structures 54

A.2 Socket functions 55

A.3 Interface identification 56

A.4 New socket options 56

A.5 Address resolution and handling 57

A.6 Address conversion functions 59

A.7 New macros 60

B. APPENDIX B: ADVANCED SOCKETS API FOR IPV6 61

B.1 Accessing to IPv6 and extension headers 61

B.2 Ancillary data 61

B.3 Socket options and ancillary data 62

B.4 Hop by hop options and destination options 63

B.5 Routing headers 64

B.6 Packet info 65

C. APPENDIX C: MGEN6 66

D. APPENDIX D: DELAY6 68

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 5 of 68

��� ,QWURGXFWLRQ

This document was prepared by all partners involved in WP3 (WorkPackage 3) of IST project
LONG. It describes guidelines for porting and migrating applications and services into IPv6.
This will allow the developers to move smoothly their applications into the new environment.

Different sites have different constraints. Sometimes the transition is demanded because of the
lack of network addresses, and sometimes the site requires the use of new features provided
by IPv6, such as:

• Support efficient Quality of Service specifications.

• Support of mobile nodes able to move through the network without loosing connectivity.

• IP security level support with authentication and encryption.

• IP multicast support.

• Improve support for autoconfiguration of network addresses.

The transition should be gradual and flexible. The mechanisms for transition [RFC1933] have
been designed so that there were as few dependencies as possible between the different
elements involved in the transition. All approaches are possible: start with network transition
and follow with applications, or vice versa. The main constraint is related to network names.
A DNS (and sometimes a NIS server) should be deployed to support both IPv4 and IPv6
addresses before network and application transition is performed.

The most fundamental technique, from the application point of view, used for the transition is
known as dual stack. This means that IPv4 nodes are upgraded to support both IPv4 and IPv6.
This allows seamless operation with existing applications (that only know about IPv4) as well
as perfect interoperability with IPv4 nodes across the network while allowing new
applications to take advantage of IPv6.

More information about dual stack machines, other network layer transition mechanisms and
scenarios of transition can be found in deliverable 2.1 of LONG project.

Most existing network devices are likely to remain dual for a very long time (many years).
However, for some new classes of network devices it might be beneficial to not have to
allocate IPv4 addresses, due to the scarcity of globally unique IPv4 addresses. Thus, such
devices might rather be soon transformed into IPv6-only ones, given that, while they might
have an IPv4 protocol stack, they would not have an IPv4 address assigned to them. Since
there is a fundamental constraint in the transition, a node without an IPv4 address can not
interoperate at the IP level with IPv4-only nodes. Thus these new network devices would only
be able to interoperate with IPv6 capable nodes.

����6FRSH�RI�WKH�'RFXPHQW

This document is focused on the development of networking applications using any
programming language. It includes the definition and description of distributed application

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 6 of 68

scenarios and guidelines to migrate existing applications to new IPv6 environment. The
document includes the list of RFCs specifying IPv6 sockets programming interfaces and the
comparison with previous ones. This guide also provides examples of code changes.

 The document intends to help in the analysis and estimates of the porting, giving guidelines
when planning to adopt IPv6. Therefore, it is mainly devoted to distributed program
developers, but not only. Network managers can take benefit from the document learning to
evaluate their operating service platform migration.

����5HODWLRQVKLS�ZLWK�WKH�2YHUDOO�3URMHFW�2EMHFWLYHV

One main objective of the LONG project is to evaluate the application migration effort from
IPv4 to the new generation IPv6 scenario. WP3 copes with the study, definition and
implementation of the functionality and requirements for distributed multimedia applications
running over Next Generation networks.

During transition to New Generation networks, the lack of IPv6 applications is one of the
factors behind its limited deployment up to now. Therefore, the elaboration of application
porting guidelines is essential to accelerate the adoption of IPv6 in the European framework.

The infrastructure deployed in WP2 will serve as a reliable platform to evaluate the
characteristics and performance of new applications. The experience gained with the porting
and validation of relevant Next Generation applications will be used to produce
recommendations on methods to apply when porting existing applications to IPv6 and
heterogeneous access scenarios. The guidelines will be validated using several applications
both within the project or migrated by others.

This document is devoted to provide guidelines for migrating applications and services,
including programming interfaces description for most popular languages.

����7HFKQLFDO�%DVH

There are general recommendations in the applications migration to IPv6. These documents
guide developers on the migration of application focusing on the porting of sockets API
interface.

The most important one is draft-ietf-ipngwg-rfc2553bis03 (which obsoletes [RFC2553])
which describes the basic socket interface for IPv6. When migration includes the
programming of new functionalities related with new available functionalities provided by
IPv6, an extended API interface should be used. The advanced functionality is described in
[draft-ietf-ipngwg-rfc2292bis-02.txt] (which obsoletes [RFC2292]).

Furthermore, there are another specifications related, depending on application characteristics:

• [RFC1881], ,3Y��$GGUHVV�$OORFDWLRQ�0DQDJHPHQW. IAB, IESG. December 1995. (Format:
TXT=3215 bytes) (Status: INFORMATIONAL).

• [RFC2375], ,3Y�� 0XOWLFDVW� $GGUHVV� $VVLJQPHQts. R. Hinden, S. Deering. July 1998.
(Format: TXT=14356 bytes) (Status: INFORMATIONAL).

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 7 of 68

• [RFC2732],)RUPDW� IRU� /LWHUDO� ,3Y�� $GGUHVVHV� LQ�85/
V. R. Hinden, B., Carpenter, L.
Masinter. December 1999. (Format: TXT=7984 bytes) (Status: PROPOSED
STANDARD).

• [RFC2894], 5RXWHU� 5HQXPEHULQJ� IRU� ,3Y�. M. Crawford. August 2000. (Format:
TXT=69135 bytes) (Status: PROPOSED STANDARD).

• 3UHIHUUHG�)RUPDW� IRU� /LWHUDO� ,3Y�� $GGUHVVHV� LQ� 85/
V, [URL’s draft-ietf-ipngwg-url-
literal-02.txt] (July 14, 1999).

• "$�62&.6�EDVHG�,3Y��,3Y��*DWHZD\�0HFKDQLVP", 04/06/2000, [draft-ietf-ngtrans-socks-
gateway-04.txt].

• "2YHUYLHZ�RI�7UDQVLWLRQ�7HFKQLTXHV�IRU�,3Y��RQO\�WR�7DON�WR�,3Y��RQO\��&RPPXQLFDWLRQ",
03/09/2000, [draft-ietf-ngtrans-translator-03.txt].

• "%DVLF�6RFNHW�,QWHUIDFH�([WHQVLRQV�IRU�,3Y�", 05/11/2000, <draft-ietf-ipngwg-rfc2553bis-
00.txt>.

• "$GYDQFHG�6RFNHWV�$3,�IRU�,3Y�", 10/28/1999, [draft-ietf-ipngwg-rfc2292bis-02.txt] .

However, all these documents do not provide enough information to allow a smooth migration
to the new environment. Not much information is available to give practical experience on
how to modify networking applications code to migrate to IPv6. This document aims to
provide such practical guide.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 8 of 68

��� 6FHQDULRV�DQG�VWUDWHJLHV�IRU�JOREDO�PLJUDWLRQ

Many information has been written about network migration techniques to the next generation
environment. Although there is not too much information about how existing applications
should be changed to support IPv6. This section aims to provide information on how to
classify applications to estimate the migration effort and provide general guidelines on how to
schedule application porting.

Applications should be classified in the following categories, listed in increasing order of
complexity to be ported to IPv6:

• 1RQ� QHWZRUNLQJ� DSSOLFDWLRQV� Applications that do not establish communication
channels with other applications or processes.

• 6LWH�ORFDO� QHWZRUNLQJ� DSSOLFDWLRQV: Applications that establish communication
channels with other applications or processes in the same node.

• *OREDO�QHWZRUNLQJ�DSSOLFDWLRQV� Applications that establish communication channels
with other applications in other different nodes using IPv4 protocol.

Non networking applications should not be changed when porting to IPv6 networks as they do
not need to communicate with any other entity. But this kind of applications could store
information related to network communication, for instance, IPv4 addresses. Hence,
developers should examine the source code of these applications to check if the allocated
memory is sufficient to store the new IPv6 network information. Another typical problem is
derived from the different textual format for addresses. Parsers of the text format could fail
when porting the application to IPv6.

Site-local networking applications could establish communication channels with other
entities, but only in the same node. They should take into account the same issues as non
networking applications and, besides, additional ones because of the local communication
channels they should create. Many applications could use the loop-back address to establish
these local channels. Developers should change the IPv4 loop-back address to the new one.
There are other modifications depending on the type of node which runs the site-local
networking applications. If the node does not support IPv6, it could only run IPv4 site-local
networking applications, so these applications do not need any change. If it is a dual stack
node, as a transition mechanism to an IPv6 node, site-local networking applications could
transfer information with other IPv6 applications and processes in the same node. As dual
stack node provides an environment to let IPv4 and IPv6 interoperation, site-local networking
applications do not need any changes either. And finally, if it is an IPv6 node, the source code
of these applications should be changed to use, instead of the IPv4 communications API , the
API extensions to IPv6.

The main difference between site-local and global networking applications is the
communication peer, site-local networking applications use a local peer and global
networking applications use a local or remote peer. So, when considering the porting of this
kind of applications, the main difference is the resolution of the peer address and the
conversion address functions. Source code of global networking applications should be

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 9 of 68

examined to actualize the same changes as site-local applications and the address resolution
and conversion functions of the API extensions to IPv6.

The most important requirement in IPv6 migration is that existing applications should
continue to work during the migration process. Therefore, the most fundamental technique
used for the transition is known as dual stack. This means that IPv4 nodes are upgraded to
support both IPv4 and IPv6. Existing applications can interoperate with IPv4 nodes while new
application versions can operate with new IPv6 nodes.

This architecture must be maintained during a very long time (many years), because it is not
possible to change all applications at the same time. With dual stack it is possible to use both
IP address types during the porting period. Developers will only need to port their IPv4 client
application to the new IPv6 API and the client application will be able to communicate with
both IPv4 only server applications as well as IPv6 server applications running on either a dual
host or a v6 only host.

If it is necessary to add new network nodes and there are not enough IPv4 addresses, new IPv6
addresses can be assigned. Dual stack nodes interoperation allow network evolution. Since
there is a fundamental constraint in the transition, a node without an IPv4 address can not
interoperate at the IP level with IPv4-only nodes. Thus these new network devices would only
be able to interoperate with IPv6 capable nodes.

The mechanism to select the appropriate IP version is decided by the name service. When a
network node wants to reach another, it asks the name service for its IP address. If the answer
is an IPv4 address, it is assumed that there is a path through Internet to link with the remote
node and that this remote node is capable of receiving IPv4 connections from the source node.
The same applies for a node that has only IPv6 address. It is assumed that it understands IPv6
packets. If both source and destination nodes have dual stack, the communication will use the
type of address returned by the name service.

This document is not devoted to study how to solve other communication aspects which are
not visible to the application layer. If IPv6 addresses should be used during connection but
IPv6 routers are not part of the network infrastructure, a basic IPv4 framework should be used.
This is achieved by building IPv6 tunnels. They encapsulate IPv6 packets inside IPv4 header
and send them through the IPv4 network.

However, dual-stack should be used during most of the migration period, because not all
IPv6-only implementations allow the interaction with any kind of network node, as it can be
showed in Table 2-1. Table combinations signed with “X” denote that communication
between such kind of nodes is not possible. However, dual-stack combinations allow network
communication in almost all circumstances. There is only an exception: When the server is
IPv4 and an IPv6 client tries to communicate with it, the connection is only possible if client
address is an IPv4-mapped into IPv6 address. In this case, if the client chooses a pure IPv6
address, the server will not be able to manage the client address.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 10 of 68

7DEOH������&OLHQW�VHUYHU�DQG�QHWZRUN�W\SH�FRPELQDWLRQV

IPv4 server application IPv6 server application

IPv4 node Dual-stack IPv6 node Dual-stack

IPv4 node IPv4 IPv4 X IPv4

IP
v4

 c
lie

nt

Dual-stack IPv4 IPv4 X IPv4

IPv6 node X X IPv6 IPv6

IP
v6

 c
lie

nt

Dual-stack IPv4 IPv4 / X IPv6 IPv6

Therefore, four application types can be distinguished:

• ,3Y��RQO\� An application that is not able to handle IPv6 addresses, i.e. it can not
communicate with nodes that do not have an IPv4 address.

• ,3Y��DZDUH� An application that can communicate with nodes that do not have IPv4
addresses, i.e. the application can handle the larger IPv6 addresses. In some cases this
might be transparent to the application, for instance when the API hides the content and
format of the actual addresses.

• ,3Y��HQDEOHG� An application that, in addition to being IPv6-aware, takes advantage of
some IPv6 specific features such as flow labels. The enabled applications can still
operate over IPv4, perhaps in a degraded mode.

• ,3Y��UHTXLUHG� An application that requires some IPv6 specific feature and therefore
can not operate over IPv4.

In the general case, porting an existing application to IPv6 requires to examine the following
issues in the application source code:

• Network information storage: data structures.

• Resolution and conversion address functions.

• Communication API functions and pre-defined constants.

During the gradual transition phase from IPv4 to IPv6, the same application should be run in a
IPv4 or IPv6 nodes. Hence, portability is one of the main features of applications which
should work in both environments. One of the best ways to make applications independent of
the protocol used (IPv4 or IPv6) is to design a library which hides protocol dependency and
lets the application source code to be simpler, see Figure 2-1.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 11 of 68

)LJXUH������$SSOLFDWLRQV�SURWRFRO�LQGHSHQGHQW�RI�,3Y��RU�,3Y�

A communication library allows applications to be independent of the lower level protocol,
and provides a common communication interface to every application. Hence, applications
can forget about communication problems, since the library charges on behalf of them.

����2WKHU�SRUWLQJ�FRQVLGHUDWLRQV

Many applications use IP addresses to store references to remote nodes. This is not
recommended because IPv6 lets addresses change over time (this technique is named
renumbering). Applications should use stable identifiers for other nodes, for instance, host
names. If applications store IP addresses they should redo the mapping from host names to IP
addresses in order to solve inconsistencies.

Client applications should be prepared to connect to multi-homed severs, nodes that have
more than one IP address. Hence, when a communication channel to a multi-homed server
fails, client applications should try another IP address in the multi-homed server list of IP
addresses until they find one that is working.

Applications using URLs should change, following the definitions in [RFC2732] which
specifies square brackets to delimit IPv6 addresses: http://[IPv6Address]/index.html

����3RUWLQJ�DSSOLFDWLRQ�PRGXOHV

The following classes are used in this document to distinguish between different categories of
applications or modules inside applications:

• Protocol independent code. The application does not handle IPv6 addresses, i.e. it can not
communicate with nodes that do not manage any IP address.

• Networking code is ported by introducing new APIs to replace the old ones.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 12 of 68

• Non networking code that needs modifications for some system calls.

• Code that can only be ported if there is a modification of the program logic.

In most distributed applications, the big code deals mainly with logic and algorithmic
processing without calling any particular system calls or API related to IP communication.
The protocol independent code need not undergo any major modification while porting into
IPv6 unless some strategy of processing has changed. These changes could be due to either
cater for new demand on new application or to improve the performance of such application
in IPv6. Under most normal circumstances, it is recommended that the programmer just do the
usual FXW�DQG�SDVWH practice to port the code over to the new application. This gives two major
advantages that are: to save time and also, to guarantee the highest degree of compatibility
since the original code has been used and debug for some time.

The basic networking code can be ported by just rigidly substituting some of the API and data
structures that IPv4 application use to establish and carry out the communication. Such kind
of porting is most interesting in its rigid nature of API because its probability of automatically
ported is higher than the rest. Chapter 3 is devoted to describe how to proceed to make API
substitution.

Besides the system calls and data structures, macros are another issue. For example, to port to
IPv6, the macro AF_INET which identify the IPv4 address family can be changed to either
AF_INET6 which is the IPv6 specific address family or AF_UNSPEC which is the
unspecified address family. Changing to AF_INET6 usually make the porting easier but
AF_UNSPEC provides the flexibility of being able to handle multiple address family
including both IPv4, IPv6 and others.

Finally, there are certain portion of code that not only affect modification of function calls but
also the logic behind the their usage. Such code is the hardest to deal with and cannot be
automatically ported most of the time. These codes can be misleading if the programmer does
not consider the logic of the program during the migration process.

���� ,3Y��WR�,3Y��DSSOLFDWLRQ�UHHQJLQHHULQJ

Up to now, only the idea of application porting has been considered. This implies to substitute
IPv4 BSD sockets API calls for these new in the IPv6 socket API. This substitution preserves
the IPv4 API semantic and use, so the IPv6 API is a result of a projection from the IPv4
semantic of the API.

One approach to do this consist in apply software reengineering techniques. Application
reengineering is usually defined as “WKH� H[DPLQDWLRQ� DQG� DOWHUDWLRQ� RI� D� VXEMHFW� V\VWHP� WR
UHFRQVWLWXWH�LW�LQ�D�QHZ�IRUP�DQG�WKH�VXEVHTXHQW�LPSOHPHQWDWLRQ�RI�WKH�QHZ�IRUP”.

So to change the program implies that the developer understands the logic and structure of the
program before starting. This approach can be hard, specially if he is not the author of the
code. Of course, it implies that he has access to the source program code.

To perform code reengineering, the developer may start doing some code revision,
transforming it from one form of representation to another at the same relative level of

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 13 of 68

abstraction. The new representation is meant to preserve the semantics and external behavior
of the original, but may be easier to understand for the modification team.

In the porting of the IPv4 applications there can be different degrees. If the application only
uses basic communications interface facilities, the identification and migration is easy.
However, if advanced facilities should be considered, a redesign of some parts must be done.
A taxonomy of porting can be defined depending on the revision degree that should be done:

• Simple API projection: direct substitution of communications API calls.

• Simple program porting: substitution includes revision of small communication code
parts.

• Program refactoring: redesign program to encapsulate and isolate the communication
code.

• Program reengineering: redesign whole program to add or fix the new functionality.

• Program paradigm change: redesign under a new paradigm or programming language,
e.g. from C to C++.

• Program rewritten: starting with the previous code rewrite the code from scratch.

• Program redesign: start from scratch using only the functional requirements.

Note that in some cases the last solutions will be better than to keep the old code.

One of the current methodologies for reengineering and refactoring is the Extreme
Programming. It is heavily based on Object Oriented programming, but because of its
principles it can be applied to this case.

SUN Microsystems has developed the "Socket Scrubber" tools to make easier the upgrade
from IPv4 to IPv6. These tools search for predefined lists of IPv4 keyword parameters and
function calls in the source code and return the code section where changes should be made.
The result of Socket Scrubber execution depends on source code, which should use the coding
standards instead of hard-coding contents for parameters. Only a pattern matching for the
keyword strings is checked.

The following references contain more information on this issue:

• http://satc.gsfc.nasa.gov/support/index.html

• http://www.sei.cmu.edu/reengineering/

• http://www.comp.lancs.ac.uk/projects/RenaissanceWeb/Reengineering/

• http://www.tcse.org/revengr/

• http://www.sei.cmu.edu/reengineering/pubs/iwsa95/

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 14 of 68

����6ROXWLRQV�ZLWKRXW�VRXUFHV

The previous solutions only work if the source codes are available. In some environments, the
reverse engineering of the application code can even be illegal, so a way for bypassing this
situation must be found.

Sometimes Reverse Engineering technique can be applied. This will heavily depend on the
license owned for the software. Usually, being an end user for the software most of software
licenses advice not to do reverse engineering of the code. Only in some cases this will be a
feasible way to go.

Reverse Engineering tools allow the substitution of IPv4 API library calls by equivalent IPv6
calls. This procedure has a lot of restrictions because it is not possible to analyze high level
design structure without source code.

If the application uses standard services, the approach of applications and services migration
guidelines is to build the IPv6-compliant server:

The suite of building IPv6-compliant server includes building Web server, FTP server, MAIL
server, DNS server, etc.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 15 of 68

��� &RPPXQLFDWLRQ�$3,V

This section is aimed to discuss about the main issues that application developers should take
into account when porting networking code to IPv6. Using new IPv6 features usually requires
a new application architecture design which is out of the scope of this section.

Application porting must be written into certain programming language. Usually, the
programming languages have some libraries or API to access the network facilities and to use
them to implement the communication. This section is focused on the description of key
aspects to take into account, and on the development status of new communication libraries
for the most popular programming languages.

The IPv6 API can be divided in two main parts: the basic interface to replace the IPv4 API
and the advanced features API which provide access to new facilities available only in IPv6.

����3RUWLQJ�RI�&�SURJUDPV

������ %HUNHOH\�VRFNHW�LQWHUIDFH

Since Berkeley socket interface was created in the early 80s, it has became the de facto
standard for network programming. Many Unix systems use this API as the base for their
systems, for instance FreeBSD. Other, as Linux, developed their networking code and the
socket API from scratch.

Some changes are needed to adapt the socket API for IPv6 support. They are fully described
in [RFC2553]. This section gives a briefly description of these changes, more information can
be found in Appendix A.

The main differences between socket interface API and the extensions to IPv6 are:

• Data structures.

• Name-to-address functions.

• Address conversion functions.

• Core sockets functions.

�������� 'DWD�VWUXFWXUHV

The size of the IP address is visible to applications through the socket address structures in the
socket interface. Hence, a new definition of the socket address structure is required,
VRFNDGGUBLQ�. The VRFNDGGUBLQ structure is the protocol specific address data structure for
IPv4.

The next Figure 3-1 shows the differences between VRFNDGGUBLQ, VRFNDGGUBLQ� and the
generic socket address structure, VRFNDGGU. Socket functions are defined as taking a pointer to
a generic socket address structure as an argument, since they must deal with socket address
structures from any of the supported protocol families. Calls to these functions must cast the

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 16 of 68

pointer to the protocol specific socket address structure to be a pointer to a generic address
structure.

)LJXUH������&RPSDULVRQ�RI�VRFNHW�DGGUHVV�VWUXFWXUHV

In order to provide portable code across multiple address families and platforms, developers
should define a new structure with adequate length and alignment to support many protocol-
specific address structures, VRFNDGGUBVWRUDJH (proposed at draft-ietf-ipngwg-rfc2553bis-
00.txt).

�������� 1DPH�WR�DGGUHVV�IXQFWLRQV

Applications frequently use names instead of numeric addresses for hosts. There are defined
two new thread safe functions to make the translation: JHWLSQRGHE\QDPH and
JHWLSQRGHE\DGGU. When using the former, we get the IP address from the hostname or the
numeric address string (i.e, a dotted-decimal IPv4 address or an IPv6 hex address), and when
calling the latter, we get the hostname from the IP address. These functions are protocol
dependent, both take as an argument the address family to configure a query for an IPv4 or
IPv6 query.

There are defined two new function, JHWDGGULQIR and JHWQDPHLQIR, which hide all of the
protocol dependencies. Hence, applications should only work with the socket address
structures that are filled by these functions. The JHWDGGULQIR function returns a set of socket
addresses, which match with the name and/or service given, and additional information to be
used in creating a socket. The JHWQDPHLQIR returns the hostname and service associated to a
socket address structure.

�������� $GGUHVV�FRQYHUVLRQ�IXQFWLRQV

The new functions LQHWBSWRQ and LQHWBQWRS convert from ASCII string into the binary
address format, the socket address structure, and vice-versa. The original ones LQHWBDWRQ and
LQHWBQWRD can only manage 32-bit IP addresses, hence, they can not be used with IPv6
addresses.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 17 of 68

�������� &RUH�VRFNHW�IXQFWLRQV

There are not differences between IPv4 and IPv6 socket functions. The only differences are
the values which these functions are called.

The socket function creates a descriptor for a network communication. This function takes
different values for the address family and the protocol type arguments depending on the IP
protocol version. Applications use the rest of socket API functions to establish
communication channels. With this purpose, kernel and applications need exchange socket
address structures information using sockets functions:

Applications pass an address structure into the system kernel, see Figure 3-2. Applications
must cast from a specific protocol address structure to a generic address structure, VRFNDGGU.
Examples of this kind of API fuctions are: ELQG��FRQQHFW��VHQGPVJ and VHQGWR.

7DEOH������%6'�VRFNHW�$3,

Function Meaning

Accept Locks the server until a connection request arrives. When called it
returns the remote end IP address that has established the
connection. Besides, it returns a descriptor (integer) of the connected
socket; this number is not the same to the number of the listening
socket in the well-known port of the server. This mechanism
provides the server the ability to go on receiving connection requests
from other clients and so that it could provide concurrency.

Bind Binds the socket to the local server IP address and the listening port.
There are some ports already reserved to a definite set of services,
these are known as well-known TCP/UDP port numbers. TCP ports
do not conflict with UDP ports because each protocol has its own
port space.

Close Makes the communication channel free. It also makes the resource
occupied by the socket available again.

Connect Establishes a connection to a remote transport end point (IP address
and port). From this moment on, the socket can send/receive
information to/from this end.

Gethostname Gets the name of the local machine.

Getpeername Gets the remote end point address for a connected socket.

Listen Changes the socket to a passive socket if it is not connected (with
connect()) and so, the OS kernel will accept remote connections to
this socket. By default, when sockets are created (with socket()), the
OS treats them as active sockets.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 18 of 68

Recvfrom Waits for some data from an UDP transport end point. Once it is
called, the application is locked waiting for some data to arrive.

Read Waits for receiving some information coming from a TCP transport
end point.

Recvmsg Receives a message from a remote end point.

Sendmsg Sends a message to a remote end point.

Sendto Used by the UDP application to send data to a remote end point.

Socket Gets a TCP/UDP communication channel. When calling this
function the family socket (either AF_INET) and the kind of
connection (SOCK_STREAM , SOCK_DGRAM) have to be
specified.

Write Sends the content of a memory buffer through a socket. There is no
need to specify the remote socket address because there is a
connection already established and the OS already knows the IP
address and port where data is destined to.

The kernel returns an address structure to the application, see Figure 3-2. Applications must
cast from a generic address structure, VRFNDGGU, to a specific protocol address structure.
Examples of this kind of API functions are: DFFHSW, UHFYIURP, UHFYPVJ�� JHWSHHUQDPH and
JHWVRFNQDPH.

)LJXUH������*HQHULF�DGGUHVV�VWUXFWXUH�IURP�DQ�DSSOLFDWLRQ�WR�WKH�NHUQHO

Note, in both cases, the information exchanged is a pointer to a generic socket address
structure�� VRFNDGGU. Applications must cast this generic structure to the protocol specific
socket address structure using the provided structure length when receiving it from kernel.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 19 of 68

)LJXUH������*HQHULF�DGGUHVV�VWUXFWXUH�IURP�WKH�NHUQHO�WR�DQ�DSSOLFDWLRQ

Always a host wants to establish an UDP communication channel to a remote host, it uses the
same socket functions independently of the IP network protocol used, see Figure 3-4.

&ORVH���

���

LOCKED UNTIL A CLIENT
DATA REQUEST ARRIVES.

REQUEST
PROCESS

To a well-known port

Data Request

6RFNHW���

6HQG�WR���

5HFYIURP���

6RFNHW���

%LQG����

5FYGIRUP��

6HQG�WR��

8'3�&/,(17

8'3�6(59(5

Data Reply

)LJXUH������8'3�&OLHQW�6HUYHU�3URJUDPPLQJ�0RGHO

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 20 of 68

The Figure 3-5 shows how a TCP connection is developed and makes easy to understand the
whole process of programming under the TCP client/server model. The only difference
between IPv4 and IPv6 relies in data structures, so this figure is worth the same for IPv4 and
IPv6.

&ORVH���

���

LOCKED UNTIL A CLIENT
CONNECTION REQUEST
ARRIVES.

REQUEST
PROCESS

To a well-known port

Connection Establish&RQQHFW���

:ULWH���

5HDG���

/LVWHQ���

%LQG����

$FFHSW���

:ULWH���

7&3�&/,(17

7&3�6(59(5

Data Reply

6RFNHW���

6RFNHW���

Data Request

5HDG��

5HDG���

&ORVH���

End of file

)LJXUH������7&3�&OLHQW�6HUYHU�3URJUDPPLQJ�0RGHO

������ �:LQVRFN�LQWHUIDFH

In this section, we discuss what Winsock is, and how it can be used by applications. Also, the
portability to IPv6 of an IPv4 application, that was written using the Winsock, is explained.

Winsock – Windows Socks – is a network application-programming interface (API) for
Microsoft Windows. In WinSock, set of data structures and function are implemented as a
Dynamic Link Library (DLL).

Winsock uses the sockets paradigm that was first implemented by Berkeley Software
Distribution (BSD) and later, adapted for Microsoft Windows as Windows Sockets 1.1. This
version was the first official release but soon became the industry standard.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 21 of 68

The WinSock 1.1 specification focuses exclusively on the IPv4 protocol families. There are
16-bit and 32-bit versions of WinSock1.1, and it is included in the of Microsoft Operating
System.

A new version was implemented to expand the functionalities of the original standard. This
new version is called Windows Sockets Version 2 – WinSock 2 – and supports other protocol
suites, such as IPv6, ATM, IPX/SPX and DECnet. WinSock2 was designed to be protocol
independent. Besides WinSock 2 provides new functionality, it is backward compatibly with
version 1.1.

WinSock 2 allows the coexistence of multiple protocol stacks and the creation of application
that are network protocol independent. That is, an application can adapt to various network
environments using the mechanisms that WinSock2 provides.

The implementation of applications that support IPv6 is only possible using the WinSocks 2
services.

�������� :LQVRFN�$UFKLWHFWXUH

WinSock (version 2) is based in the Open Services Architecture (WOSA) model. This model
defines a standard service provider interface (SPI) between the Windows Socket interface,
implemented as dynamic link library (WinSock DLL), and protocol stacks.

The API is specified for application developers and the SPI is specified for protocol stack and
namespace service providers.

In this way, a single WinSock DLL can simultaneously access multiple stacks provide by
different vendors. In opposition, what happens with Winsock 1.1, that it is the transport
protocol vendor that supplies the WinSock libraries. Besides this fact, WinSock 2 is backward
compatible with WinSock 1.1. The Winsock Architecture is illustrated in Figure 3-6.

WinSock 2
Application

WinSock 2
Application

16- bits
WinSock 1.1
Application

16- bits
WinSock 1.1
Application

WinSock 2 Library
WS_32.DLL

WinSock 2 Library
WS_32.DLL

32- bits
WinSock 1.1
Application

32- bits
WinSock 1.1
Application

WINSOCK.DLL
16-bits

WINSOCK.DLL
16-bits

WSOCK32.DLL
32-bits

WSOCK32.DLL
32-bits

TCP/IP
Service
Provider

TCP/IP
Service
Provider

Other
Service
Provider

Other
Service
Provider

Physical Network

WinSock
1.1 API

WinSock
2.0 API

WinSock
2.0 SPI

Name Space
Providers

Name Space
Providers

WinSock 2
Application

WinSock 2
Application

16- bits
WinSock 1.1
Application

16- bits
WinSock 1.1
Application

WinSock 2 Library
WS_32.DLL

WinSock 2 Library
WS_32.DLL

32- bits
WinSock 1.1
Application

32- bits
WinSock 1.1
Application

WINSOCK.DLL
16-bits

WINSOCK.DLL
16-bits

WSOCK32.DLL
32-bits

WSOCK32.DLL
32-bits

TCP/IP
Service
Provider

TCP/IP
Service
Provider

Other
Service
Provider

Other
Service
Provider

Physical Network

WinSock
1.1 API

WinSock
2.0 API

WinSock
2.0 SPI

Name Space
Providers

Name Space
Providers

)LJXUH�������:LQGRZV�6RFNV�DUFKLWHFWXUH

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 22 of 68

Also, Winsock 2 includes functions that standardize the access to network naming services.
To perform this, a name-space provider is included in the Winsock architecture. This module
is responsible of name resolution services. In this way, an application can perform name
resolution without having to know the details of how a particular name service works.
WinSock can handle multiple name-space providers at the same time.

�������� :LQ6RFN�GLVWULEXWLRQV

There are currently three distributions of Winsock. In Table 3-2 the files associated with each
distribution are shown.

All operating systems of Microsoft have included the Winsock. WinSock 1.1 is included on
Windows 95 and earlier versions of NT 4. WinSock 2.0 is included on other versions.

The majority C and C++ compilers provide the header files and libraries needed for Winsock
to Windows.

7DEOH������:LQ6RFN�)LOHV

 Platform Application Dynamic Link
Library

Development
Files

16 or 32 bits
Windows

16-bit WinSock 1.1 WINSOCK.DLL WINSOCK.H

WINSOCK.LIB

32 – bit Windows 32-bit WinSock 1.1 WSOCK32.DLL WINSOCK.H

WSOCK32.LIB

32 – bit Windows 32-bit WinSock 1.1 WS2_32.DLL WINSOCK2.H

WS2_32.LIB

�������� 3RUWLQJ�IURP�:LQVRFN�����WR�:LQ6RFN��

As it says before, WinSock 2 is compatible with version 1.1. This compatibility is done on
two levels: source and binary.

Source code compatible means that an application can be re-compiled to run on Winsock 2.
For that, only is needed to include the new header file, Winsock2.h and link with the
appropriate WinSock 2 libraries (ws_32.lib rather than winsock.lib or wsock32.lib).

Binary compatibility means that Winsock 2 fully supports WinSock 1.1 executables. To
guarantee this compatibility, WinSock 2 includes two dynamic link libraries that provide a
WinSock 1.1 interface (see architecture in Figure 3-6). Applications that use the Winsock 2
API make call directly into ws_32.dll. For the applications that use Winsock 1.1 API, the
winsock.dll and wsock32.dll or wsock32.dll are used.

In both cases, a properly installed TCP/IP service provider is needed.

�������� :LQ6RFN�([WHQVLRQ�WR�WKH�%HUNHO\�$3,

Winsock (version 2) includes the complete Berkely sockets API. Also, it provides a number of
extensions to this standard to allow asynchronous access to network events, as well as enable
overlapped I/O. These extension functions are prefixed with the letters WSA.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 23 of 68

The following tables summarize the functions included in Windows Sockets 2: the Table 3-3
presents Berkeley-style functions; the Table 3-4 presents the Microsoft Windows-specific
Extension functions; and the Table 3-5 presents name registration and resolution function.

�������� 6RFNHW�)XQFWLRQV

The Windows Sockets specification includes all the following Berkeley-style socket routines
that were part of the Windows Sockets 1.1 API.

7DEOH������%HUNHOH\�VW\OH�VRFNHW�URXWLQHV

5RXWLQH 0HDQLQJ
$FFHSW� An incoming connection is acknowledged and associated with an immediately

created socket. The original socket is returned to the listening state.

%LQG Assigns a local name to an unnamed socket.

&ORVHVRFNHW Removes a socket from the per-process object reference table. Only blocks if
62B/,1*(5 is set with a nonzero time-out on a blocking socket.

&RQQHFW� Initiates a connection on the specified socket.

*HWSHHUQDPH Retrieves the name of the peer connected to the specified socket.

*HWVRFNQDPH Retrieves the local address to which the specified socket is bound.

*HWVRFNRSW Retrieves options associated with the specified socket.

+WRQO� Converts a 32-bit quantity from host-byte order to network-byte order.

+WRQV� Converts a 16-bit quantity from host-byte order to network-byte order.

,QHWBDGGU� Converts a character string representing a number in the Internet standard ".’’
notation to an Internet address value.

,QHWBQWRD� Converts an Internet address value to an ASCII string in ".’’ notation that is,
"a.b.c.d’’.

,RFWOVRFNHW Provides control for sockets.

/LVWHQ
Listens for incoming connections on a specified socket.

1WRKO� Converts a 32-bit quantity from network-byte order to host-byte order.

1WRKV� Converts a 16-bit quantity from network byte order to host byte order.

5HFY� Receives data from a connected or unconnected socket.

5HFYIURP� Receives data from either a connected or unconnected socket.

6HOHFW� Performs synchronous I/O multiplexing.

6HQG� Sends data to a connected socket.

6HQGWR� Sends data to either a connected or unconnected socket.

6HWVRFNRSW Stores options associated with the specified socket.

6KXWGRZQ� Shuts down part of a full-duplex connection

6RFNHW Creates an endpoint for communication and returns a socket descriptor.
1 The routine can block if acting on a blocking socket.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 24 of 68

2 The routine is retained for backward compatibility with Windows Sockets 1.1, and should only be
used for sockets created with AF_INET address family.

0LFURVRIW�:LQGRZV�6SHFLILF�([WHQVLRQ�)XQWLRQV

The Windows Sockets specification provides a number of extensions to the standard set of
Berkeley Sockets routines.

7DEOH������0LFURVRIW�:LQGRZV�VSHFLILF�([WHQVLRQ�IXQFWLRQV

5RXWLQH 0HDQLQJ

:6$$FFHSW� An extended version of accept, which allows for conditional
acceptance.

:6$$V\QF*HW+RVW%\$GGU�����

:6$$V\QF*HW+RVW%\1DPH�����

:6$$V\QF*HW3URWR%\1DPH� ��

�

:6$$V\QF*HW3URWR%\1XPEHU
����

:6$$V\QF*HW6HUY%\1DPH����

:6$$V\QF*HW6HUY%\3RUW����

A set of functions that provide asynchronous versions of the
standard Berkeley getXbyY functions. For example, the
WSAAsyncGetHostByName function provides an
asynchronous, message-based implementation of the
standard Berkeley gethostbyname function.

:6$$V\QF6HOHFW� Performs asynchronous version of select.

:6$&DQFHO$V\QF5HTXHVW��� Cancels an outstanding instance of a WSAAsyncGetXByY
function.

:6$&OHDQXS Signs off from the underlying Windows Sockets .dll.

:6$&ORVH(YHQW Destroys an event object.

:6$&RQQHFW�
An extended version of connect which allows for exchange
of connect data and QOS specification.

:6$&UHDWH(YHQW Creates an event object.

:6$'XSOLFDWH6RFNHW Allows an underlying socket to be shared by creating a
virtual socket.

:6$(QXP1HWZRUN(YHQWV Discovers occurrences of network events.

:6$(QXP3URWRFROV Retrieves information about each available protocol.

:6$(YHQW6HOHFW Associates network events with an event object.

:6$*HW/DVW(UURU� Obtains details of last Windows Sockets error.

:6$*HW2YHUODSSHG5HVXOW Gets completion status of overlapped operation.

:6$*HW426%\1DPH Supplies QOS parameters based on a well-known service
name.

:6$+WRQO Extended version of htonl.

:6$+WRQV Extended version of htons.

:6$,RFWO� Overlapped-capable version of IOCTL.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 25 of 68

:6$-RLQ/HDI� Adds a multipoint leaf to a multipoint session.

:6$1WRKO Extended version of ntohl.

:6$1WRKV Extended version of ntohs.

:6$3URYLGHU&RQILJ&KDQJH Receives notifications of service providers being
installed/removed.

:6$5HFY� An extended version of recv which accommodates
scatter/gather I/O, overlapped sockets and provides the
flags parameter as in, out.

:6$5HFY)URP� An extended version of recvfrom which accommodates
scatter/gather I/O, overlapped sockets and provides the
flags parameter as in, out.

:6$5HVHW(YHQW Resets an event object.

:6$6HQG� An extended version of send which accommodates
scatter/gather I/O and overlapped sockets.

:6$6HQG7R� An extended version of sendto which accommodates
scatter/gather I/O and overlapped sockets.

:6$6HW(YHQW Sets an event object.

:6$6HW/DVW(UURU� Sets the error to be returned by a subsequent
WSAGetLastError.

:6$6RFNHW
An extended version of socket which takes a
WSAPROTOCOL_INFO structure as input and allows
overlapped sockets to be created.

:6$6WDUWXS� Initializes the underlying Windows Sockets .dll.

:6$:DLW)RU0XOWLSOH(YHQWV� Blocks on multiple event objects.
1 The routine can block if acting on a blocking socket.
2 The routine is always realized by the name resolution provider associated with the default TCP/IP
service provider, if any.

1DPH�5HJLVWUDWLRQ�DQG�5HVROXWLRQ�IXQFWLRQ

The Windows Sockets specification provides functions for the network naming services.

7DEOH������1DPH�5HJLVWUDWLRQ�DQG�5HVROXWLRQ�)XQFWLRQ

)XQFWLRQ 'HVFULSWLRQ

WSAAddressToString Converts an address structure into a human-readable
numeric string.

WSAEnumNameSpaceProviders Retrieves the list of available Name Registration
and Resolution service providers.

WSAGetServiceClassInfo Retrieves all of the class-specific information
pertaining to a service class.

WSAGetServiceClassNameByClassId Returns the name of the service associated with the
given type.

WSAInstallServiceClass Creates a new new service class type and stores its
class-specific information.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 26 of 68

WSALookupServiceBegin Initiates a client query to retrieve name information
as constrained by a WSAQUERYSET data
structure.

WSALookupServiceEnd Finishes a client query started by
WSALookupServiceBegin and frees resources
associated with the query.

WSALookupServiceNext Retrieves the next unit of name information from a
client query initiated by WSALookupServiceBegin.

WSARemoveServiceClass Permanently removes a service class type.

WSASetService Registers or removes from the registry a service
instance within one or more name spaces.

WSAStringToAddress Converts a human-readable numeric string to a
socket address structure suitable for passing to
Windows Sockets routines.

�������� 3RUWLQJ�:LQVRFN�FRPSOLDQW�DSSOLFDWLRQV�WR�,3Y�

The changes performed on the sockets functions so that they support IPv6 are documented
[RFC 2553]. In the same way, the Winsock (only version 2) supports [RFC 2553] with some
exceptions:

• The header files listed in this RFC are not applicable. Instead of these, winsock2.h,
ws2tcpip and tcpipv6.h header files should be used.

• Winsock enables only the Socket Address Structure compatible with 4.3BSD-Based
System and defined in section 3.3 in the [RFC2553].

The structure compatible with 4.4 BSD Based System, and defined in 3.4, does not
apply.

• IPv4-mapped addresses as described in section 3.7 are not supported. According to this
section the IPv4-mapped addresses can be generated automatically by the
getipnodebyname() function when the specified host has only IPv4 address.

• The interface identification functions described in section 4 are not supported. The
identification of the interfaces as described in this section is only applied on Unix-
based systems.

• The new functions to perform operations with IPv6 address, as defined in section 6.1-
6.3 and 6.6, are not supported.

In sections 6.1-6.3, new functions were defined to replace JHWKRVWQDPH�� and
JHWKRVWE\DGGU��, such as JHWLSQRGHE\QDPH��, JHWLSQRGHE\DGGU�� and IUHHKRVWHQW.
These functions are not supported.

In same way, the new functions defined to replace LQHWBDGGU�� and LQHWBQWRD�� as defined
in section 6.6 are not supported. In this sections are proposed LQHWBQWRQ�� and
LQHWBQWRS���

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 27 of 68

Microsoft makes available a tool called Checkv4.exei to scan source code files and identify
code that needs to be changed to support IPv6.

����3RUWLQJ�RI�&��

C++ is an object oriented programming language which is the mostly upwardly compatible
extension of C. Porting C++ applications to IPv6 is similar to C applications case and the
network programming API depends on the operating system which applications work. The
main advantage of working with C++ is the set of properties derived from using an object
oriented programming language: overloading, polymorphism, template definition and
dynamic binding. This section is aimed to show how developers could use these features to
porting C++ applications using the socket API, although these concepts may be applied to the
rest of APIs.

Most applications use TCP and UDP transport protocols instead of using the IP network layer
protocol directly. From application point of view, applications do not need to know which
version of IP protocol are using. So, application code should be protocol independent.
Unfortunately, as we have seen in the last section, there are protocol dependent issues which
are visible to applications through socket API. Inheritance mechanism of the object oriented
programming languages provides a way to define a set of classes containing the general
properties of TCP and UDP services, hiding the specific details of the network layer protocol.
Typically, this set of related classes can be grouped into a class library, a “network standard
component”. One of the advantages of this network component definition is reusability. Other
network applications may share this library to use TCP and UDP services. Although
reusability is not dependent on specific language features, C++ features make reusability
easier.

������ &DVH�RI�VWXG\

This case of study is aimed to show basic IPv6 features required to change existing TCP and
UDP network applications. Most network application only use these basic features, so changes
are based on: the larger address size and the basic socket functions.

Figure 3-7 shows the UML diagram of a network class library example. There is a wrapper for
each one of the TCP and UDP transport protocols: VWUHDP6RFNHWBW and GJUDP6RFNHWBW.
These wrappers are used to establish communication channels between network endpoint
addresses, LQHW$GGUBW. Note, as a generic network class library , it may provide interfaces for
other communication protocols, in the Figure 3-7 the Unix domain protocols.

i Checkv4.exe is shipped with IPv6 Technology Preview files and it is found in the \bin folder.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 28 of 68

)LJXUH������80/�GLDJUDP�RI�D�QHWZRUN�FODVV�OLEUDU\�H[DPSOH

Both, VWUHDP6RFNHWBW and GJUDP6RFNHWBW store the network endpoint addresses as
attributes and have methods to wrapper the C API functions providing the same functionality.

When an application need a TCP or UDP channel, it should create first the network endpoint
address (or two addresses, depending on using server o client model), typically from a
hostname and service port, and then it should create the VWUHDP6RFNHWBW or GJUDP6RFNHWBW
wrapper.

Developers should easily extend this API to support IPv6 protocol only changing the IP
address structure. They could use one of the following solutions:

Create a new address class for IPv6 addresses, LQHW�$GGUBW, inherited from VHUYLFH$GGUBW�

Change LQHW$GGUBW to support IPv6 addresses.

First solution seems clearer than the second one. However, if the first one is used, applications
should know which IP protocol version are using in order to create LQHW�$GGUBW� or
LQHW$GGUBW structure, they are protocol dependent. Using the second solution, applications
create an LQHW$GGUBW structure, from a hostname and service port, and the network library is
the burden of creating an IPv6 address if this protocol is supported, or an IPv4 one in the
other case.

Methods of VWUHDP6RFNHWBW and GJUDP6RFNHWBW classes which are wrappers of the socket
API functions should not be changed, as they are called using the generic socket address
structure defined in the socket API.

Once the network library supports IPv6 protocol, old applications using this library work
properly on IPv4 and IPv6 systems with minimal changes in application source code.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 29 of 68

Portability is guaranteed since library supports both IPv4 and IPv6 protocols. If applications
run on a system that does not support IPv6, the IPv6 socket creation will fail, but the library
will handle this error creating an IPv4 socket and finally the communication channel will
succeed.

����0LJUDWLRQ��RI�62&.6�EDVHG�DSSOLFDWLRQV

SOCKS is a popular protocol that is used to control generic traffic through firewalls.

A SOCKS server is located at the firewall. Applications (using any application protocol) on
the internal network connect to the SOCKS server and, in turn, the SOCKS server connects to
the outside world. The SOCKS server relays communications between the internal client
application and the outside world. The SOCKS server can permit/deny any connection based
on rules that an administrator defines: what these rules are or how they are specified is not
part of the SOCKS protocol. The applications outside the firewall think they are talking to a
normal client.

SOCKS operates at the connection-level, so that any application protocol can flow through
SOCKS. In contrast, higher-level application proxying can only work with their corresponding
application protocols – for example, an HTTP proxy server will only relay HTTP protocol
traffic. The advantage of SOCKS is that it is generic – the advantage of application proxies is
that they have a detailed understanding of the

application protocol and so, they can be more specific in auditing and rules regarding data
flows can be tied to the protocol. Many firewalls contain both a SOCKS server for generic
traffic and application proxies for the most popular protocols (HTTP).

SOCKS should not be confused with the sockets API. Most software engineers are familiar
with the sockets API for network programming.

Other mechanism for porting applications is the use of socks to make the transition. This
mechanism is described in [RFC3089] "$�62&.6�EDVHG�,3Y��,3Y��*DWHZD\�0HFKDQLVP". In
the document the use of a socks server as an IPv4 to IPv6 gateway is described. Instead of
using socks like a secure way for the applications to cross firewalls and to access to intranets,
the same protocol is used for the gateway approach.

Several applications that are already “sockified” will be usable in some IPv6 environment
without any modification.

Services of a SOCKS Server

The SOCKS specification describes the protocol between a SOCKS server and a SOCKS
client. It does not mandate what range of services the SOCKS server provides, beyond stating
that it communicates with the outside world.

As the SOCKS server is a single conduit through which internal-external transmissions flow,
it is the ideal spot to monitor, control and audit what is happening. This is the real reason
SOCKS is deployed. SOCKS servers are available stand-alone, built into proxy servers and
built into firewall products. They offer easy-to-use tools to setup SOCKS connections, define

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 30 of 68

rules that automatically permit/deny connections and configurable recording of information
about what flows through the SOCKS server.

A free implementation for a SOCKSv5 proxy server can be found at
http://www.inet.no/dante/.

6HUYLFHV�RI�D�62&.6�&OLHQW

Client applications running on devices inside a firewall will often have to communicate with
other devices inside the firewall, and with servers outside the firewall. If the firewall has
SOCKS deployed, then clients seeking outside connections need to communicate with the
SOCKS server which, in turn, communicates with the remote server. There are two main
techniques in use for this:

• The first option is to completely replace the sockets library on the client device with a
SOCKS compliant layer that transparently adds SOCKS functionality to the underlying
sockets APIs. The advantage here is that applications can use SOCKS without having to
be re-coded.

• The second option is to create a new API that applications can selectively call. The
advantages of this is that client apps that need to talk to server outside the server can use
SOCKS, but other applications on the same machine that only need to talk to other devices
inside the firewall need not use SOCKS.

$GGLQJ�62&.6

Following the recommendations at http://www.socks.nec.com we can port an application to
use socks by compiling with SOCKSv5:

• The library of SOCKS v5 Reference Implementation has functions that are equivalent to
the standard BSD socket functions. Converting an application to use the SOCKS protocol
normally only requires adding an #include directive and linking with this library.
Applications that follow the SOCKS friendly guidelines should work without any further
modification.

• Identify the program for syslog.

• Add this line at or near the beginning of the main procedure:
SOCKSinit(argv[0]);

If you omit this line, the syslog lines that display on the client host describe a generic
program name, instead of the actual client program name.

• Map functions to the SOCKSified replacement functions SOCKS V4 users: Add these

#define directives to all cc lines:
-Dconnect=Rconnect -Dgetsockname=Rgetsockname \

-Dgetpeername=Rgetpeername -Dbind=Rbind \

-Daccept=Raccept -Dlisten=Rlisten -Dselect=Rselect

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 31 of 68

62&.6�Y��XVHUV

• Add these #define directive to all cc lines and include the socks.h header file:
-DSOCKS

• If you use a makefile, add this line to the CFLAGS macro definition.

• Link with the appropriate SOCKS library.

• Add these to the command that creates the executable:
SOCKS V4 users:

-L<socks_lib_dir> -lsocks

SOCKS v5 users:

-L<socks_lib_dir> -lsocks5

The SOCKS V4 client library cannot SOCKSify UDP sockets because SOCKS V4 doesn’t
support UDP.

&RQYHUWLQJ�62&.6�9��WR�62&.6�Y�

• If the source code is written using the SOCKS V4 library, compile it with the library of
SOCKS v5 Reference Implementation.

• Map functions to the replacement functions of SOCKS v5 Reference Implementation.

• To all cc lines, add:
-DRconnect=SOCKSconnect \

-DRgetsockname=SOCKSgetsockname \

-DRgetpeername=SOCKSgetpeername \

-DRbind=SOCKSbind \

-DRaccept=SOCKSaccept \

-DRlisten=SOCKSlisten \

-DRselect=SOCKSselect \

-Drecvfrom=SOCKSrecvfrom \

-Dsendto=SOCKSsendto \

-Drecv=SOCKSrecv \

-Dsend=SOCKSsend \

-Dread=SOCKSread \

-Dwrite=SOCKSwrite \

-Drresvport=SOCKSrresvport \

-Dshutdown=SOCKSshutdown \

-Dlisten=SOCKSlisten \

-Dclose=SOCKSclose \

-Ddup=SOCKSdup \

-Ddup2=SOCKSdup2 \

-Dfclose=SOCKSfclose \

-Dgethostbyname=SOCKSgethostbyname

• Link with the library of SOCKS v5 Reference Implementation.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 32 of 68

• To the command that creates the executable, add:
-L<socks_lib_dir> -lsocks5

8VLQJ�UXQVRFNV

Runsocks is a shell script that loads the shared library of SOCKS v5 Reference
Implementation. If your operating system supports shared libraries, runsocks dynamically
allows the application to use the SOCKSified networking function calls in the shared libraries
of SOCKS v5 Reference Implementation instead of the standard networking function calls.

If the application is written using WINSOCKS instead of using the BSD socket API there is
an extension that can be used: SocksCap. This WinSock extension will SOCKSifies Winsock
Applications. This can be downloaded for non profit use at :
http://www.socks.nec.com/reference/sockscap.html. Will automatically enables Windows-
based TCP and UDP networking client applications to traverse a SOCKS firewall. SocksCap
intercepts the networking calls from WinSock applications and redirects them through the
SOCKS server without modification to the original applications or to the operating system
software or drivers.

����3RUWLQJ�RI�-DYD

Java is an object oriented programming language designed to develop Internet applications. It
was designed with the security for programming in mind, been the first object oriented
language with network support fully integrated into the language core.

One of the key points for the language design is portability and platform independence. This is
obtained by a wide use of software patterns, been one of the first Object Oriented
programming language which integrate it deeply into its design. The broad and wise use of
this patterns is one of the key point from the separation of the implementation details from the
objects invocation that will allow the porting to be an easy task. Another outstanding issue for
the design was underlying machine and operating system independence. This was obtained by
making the binary code machine independent and running it on a virtual machine.

Networking applications used the socket interface implemented inside the virtual machine,
well isolated by a use of the proxy, delegation and factory designs patterns.

The language objectives of secure code download and platform neutrality through Internet was
fulfilled by using a generic virtual machine code (bytecode) and a Java Virtual Machine that
interprets it.

The Java Virtual Machine can link C libraries in order to use some special Native methods to
extend the functionality that can not be coded in the Java language for some special reasons,
like performance or access to other APIs.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 33 of 68

DatagramPacket
(from net)

SocketImplFactory
(from net)

<<Interface>>

6RFNHW,PSO
�IURP�QHW�DatagramSocket

(from net)

SocketOptio
ns

(from net)

ServerSocket
(from net)

Socket
(f rom net)

XVHV

SURGXFHV

MulticastSocket
(from net)

PlainDatagramSocketImpl
(from net)

XVHV

XVHV

PlainSocketImpl
(from net)

SURGXFHV

InetAddress
(from net)

InetAddressImpl
(from net)

XVHV

)LJXUH�������MDYD�QHW�80/�GHVFULSWLRQ

The Java network API is the basic package of java.net. This API is partially written in java
and partially implemented using native methods. The main classes structure is defined in
UML diagram (Figure 3-8). So with this design, it is easy to provide new classes to uses the
IPv6 facilities.

�������� -DQR�,3Y��3RUWLQJ

JANO (Java Advanced NetwOrk facilities) is an open software project which aims to enhance
the actual java network API with new facilities in order to design new applications. The
project is hosted by Sourceforge (http://sourceforge.net/projects/jano/) which grants support to
open software initiatives.

The idea is to design a replacement for the socket building factories to create different sockets
that uses IPv6 instead of IPv4 ones. Later this idea will allow the applications to access to
new facilities .

By using this porting only some advance communication programs will need to change
something in the code. It goal is to be as much transparent as possible to the end programmer
and developer.

,3Y��$SSOLFDWLRQ�SRUWLQJ

Like for the other applications, we can make a taxonomy of porting based on the API parts
that the application are using to implement their functionality.

In many cases little work is needed here. Just by modifying the installation of the Java Virtual
Machine to load the JANO libraries on the start up, all the sockets factories will be initialized

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 34 of 68

to use the IPv6 implementations. This implies that no change to the code, and even to the
bytecode, is needed:

• Since JANO uses the double stack approach, a polymorphism based implementation for
both kind of sockets is provided. So the parts of the code that uses hardcoded IPv4
addresses will also work.

• 6WDQGDUG�FRPPXQLFDWLRQV�$3,: All the HTTP based communication will be built upon the
TCP sockets, so it will work without any change.

• This approach will fail if the software made some changes to the underlying factories for
sockets. This is done by some software the uses special sockets implementations, like SSL
or TSL software. In this case we will need to recode the SSL implementations to work
with Ipv6.

• 8'3�VRFNHWV: No change needed.

• $GYDQFHG�VRFNHW�XVH: Last versions of Java SDK include the possibility of accessing to the
raw socket underlying facilities. This is still a work in progress into the JANO porting so,
up to now, there is no way of obtaining this service in Java.

The Java security model can limit some of the access to the advance API. It’s a good design
decision that any code downloaded from the network, like an applet can not access to this.
Since the security model change on 1.3 you need to sign and give permissions per function.
This affects different API like the multimedia API (JMF: Java Media Framework) to support
IPv6. This API implements the RTP and RTSP protocols using actual socket API. In order to
port this, a new permissions profile is needed. This is a work in progress into the JANO
project.

�������� &RQFOXVLRQV

Java application porting to IPv6 is trivial in the 98% of the cases due to the quality of the API
design. This API was heavily based on software patterns so reusability is easily achieved.

SUN Microsystems has indicated their intentions to provide IPv6 support in future versions of
JDK (1.4) but the time framework is still unclear. The turnaround solution implies using third
parties’ implementations like JANO.

����6FULSWLQJ�ODQJXDJH�VHUYLFHV

Many of the services that users and administrators use in the internet are not written in a
programming language, but prototyped into a scripting language. The origins of scripting
languages are traced back to the design of the Unix operating system like a tool box of several
cooperating small programmable utilities. Each of the utilities, like awk or sed, has its own
small language. This allows the developers to fast obtain the wanted functionality without too
much work. This approach has been used for a long time with great success. Up to now
several network services are developed using this techniques. One usual software engineering
problem with this languages is that they are often “Read Only (ROM)”. This means that with a

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 35 of 68

complex syntax, only the person who wrote the program is able to understand and modify it.
Even that person has problems after an small amount of time if modifications are required.
Instead of been super languages able of solve all the problems in the world, usually a language
focuses into solving a problem into a field of computer and networking software engineering
science. For an small amount of the languages available you can look at the hello world page
(http://www.latech.edu/~acm/HelloWorld.shtml) that shows programs that print Hello World
in 204 languages.

The approach of the porting will take two different directions:

• Script porting.

• Run time support porting.

Other possible problem about porting is the licence of the run time support. In the current
internet world the successful scripting languages run time support are often written in C
language for portability, and are publish with a license (BSD-like or GNU-like) that allows the
distribution of the modified code.

������ 3HUO�ODQJXDJH

For Perl is possible to work in both directions defined before. The first option is to migrate
scripts using a new communications library. The second option is to migrate the complete run
time support.

The porting of Perl scripts can be easily developed with the aid of XS. It is a language used to
create an extension interface between Perl and some C library which one wishes to use with
Perl. The XS interface is combined with the library to create a new library which can be linked
to Perl. An ;68% is a function in the XS language and is the core component of the Perl
application interface.

The XS compiler is called [VXESS. This compiler will embed the constructs necessary to let
an XSUB, which is really a C function in disguise, manipulate Perl values and creates the glue
necessary to let Perl access the XSUB. The compiler uses W\SHPDSV to determine how to map
C function parameters and variables to Perl values. The default typemap handles many
common C types. A supplement typemap must be created to handle special structures and
types for the library being linked.

The second alternative is to use a new Perl version with integrated IPv6 support. There is a
patch for perl 5.004_04 (ftp://ftp.v6.linux.or.jp/pub/Linux/IPv6/perl/). There is a version for
an old Linux Debian distribution. The behavior is not good, with errors during installation and
the support is not satisfactory.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 36 of 68

��� ([DPSOH�RI�,3Y��DSSOLFDWLRQ�SRUWLQJ��0*(1

We will illustrate the use of the sockets API with some examples taken from the porting of
MGENv6. For more detailed information about socket interface extensions for IPv6 see
appendix (annex A and annex B).

MGENv6 uses the following code to open an IPv6 UDP socket and it also sets some multicast
options:

static int 2SHQ7[6RFNHW(unsigned short *thePort,

unsigned char theTTL,

struct in6_addr localAddr,

char *interfaceName)

{

 int fd;

 int on=1;

 unsigned int ifc_index;

 struct sockaddr_in6 serv_addr;

 int TTL;

 int buffer;

 /* Open a socket */

 if ((fd = socket(AF_INET6, SOCK_DGRAM, 0)) < 0)

 {

 perror("MGEN: OpenTxSocket: socket() error");

 return -1;

 }

 /* assign a name to the socket. The source address can

 be override specifiying a different one with the ON

 command on a flow by flow basis. Each flow can have

 one different source address, overriding each one

 with sendmsg() and in6_pktinfo structure

 */

 memset((char *)&serv_addr, 0, sizeof(struct sockaddr_in6));

 ((struct sockaddr_in6 *)&serv_addr)->sin6_family = AF_INET6;

 ((struct sockaddr_in6 *)&serv_addr)->sin6_addr = localAddr;

 ((struct sockaddr_in6 *)&serv_addr)->sin6_port = tons(*thePort);

 if (bind(fd, (struct sockaddr *)&serv_addr,

 sizeof(struct sockaddr_in6)) < 0)

 {

 perror("MGEN: OpenTxSocket: bind() error");

 close(fd);

 return -2;

 }

 /* ... */

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 37 of 68

 TTL = theTTL;

 if(setsockopt(fd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,

 &TTL, sizeof(TTL)) < 0)

 perror(“MGEN:OpenTxSocket:”

 “setsockopt(IPV6_MULTICAST_HOPS) error”);

 ifc_index= if_nametoindex(interfaceName);

 if (setsockopt(fd, IPPROTO_IPV6, IPV6_MULTICAST_IF,

 &ifc_index, sizeof(ifc_index)) < 0)

 perror(“MGEN:OpenTxSocket:”

 “setsockopt(IPV6_MULTICAST_IF) error”);

 return fd;

} /* end OpenTxSocket() */

����&RQILJXULQJ�UHFHSWLRQ�VRFNHW

To receive IPv6 packets, the application uses the function listed below. Note, MGENv6
defines IPv6 socket options to force the reception of IPv6 packet options:

/* enable the socket to receive extension headers...*/

static int 2SHQ5[6RFNHW(unsigned short *port, int BIND)

{

 int fd;

 int on = 1;

 struct sockaddr_in6 serv_addr;

 char rbuf[16];

 int optlen = 16;

 const unsigned long rbufSize = 122912;

 /* Open a socket */

 if ((fd = socket(AF_INET6, SOCK_DGRAM, 0)) < 0)

 {

 perror("DREC: OpenRxSocket: socket() error");

 return -1;

 }

 if (BIND)

 {

 memset((char *)&serv_addr, 0, sizeof(struct sockaddr_in6));

 ((struct sockaddr_in6 *)&serv_addr)->sin6_family = AF_INET6;

 ((struct sockaddr_in6 *)&serv_addr)->sin6_addr = in6addr_any;

 ((struct sockaddr_in6 *)&serv_addr)->sin6_port = htons(*port);

 if (bind(fd, (struct sockaddr *)&serv_addr,

 sizeof(struct sockaddr_in6)) < 0)

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 38 of 68

 {

 perror("DREC: OpenRxSocket: bind() error");

 close(fd);

 return -2;

 }

 /* Try set recv socket buffer to a good size */

 memcpy(rbuf, &rbufSize, optlen);

 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, rbuf, optlen) < 0)

 {

 /* Ignore errors for now… */

 }

 /* enable the socket to received extension headers...*/

#ifdef IPV6_RECVHOPOPTS

 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVHOPOPTS, &on,

 sizeof(on));

 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on,

 sizeof(on));

 setsockopt(fd, IPPROTO_IPV6, IPV6_RECVDSTOPTS, &on,

 sizeof(on));

#else

 setsockopt(fd, IPPROTO_IPV6, IPV6_HOPOPTS, &on,

 sizeof(on));

 setsockopt(fd, IPPROTO_IPV6, IPV6_RTHDR, &on,

 sizeof(on));

 setsockopt(fd, IPPROTO_IPV6, IPV6_DSTOPTS, &on,

 sizeof(on));

#endif

 }

 return fd;

} /* end OpenRxSocket() */

����-RLQLQJ�OHDYLQJ�PXOWLFDVW�JURXSV

The following two functions are used to join/leave IPv6 multicast groups:

static int -RLQ*URXS(struct in6_addr group_addr,

 struct in6_addr iface_addr,

 DrecSocket *recvSocketList)

{

 /* ... */

 struct ipv6_mreq mreq;

 char aux[INET6_ADDRSTRLEN];

 /* ... */

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 39 of 68

 mreq.ipv6mr_multiaddr = group_addr;

 mreq.ipv6mr_interface = if_nametoindex(interfaceName);

#ifdef IPV6_JOIN_GROUP

 if(setsockopt(nextSocket->fd, IPPROTO_IPV6,

 IPV6_JOIN_GROUP, (char *)&mreq,

 sizeof(mreq))<0)

#else

 if (setsockopt(nextSocket->fd, IPPROTO_IPV6,

 IPV6_ADD_MEMBERSHIP,(char *)&mreq,

 sizeof(mreq))< 0)

#endif

 {

 perror("DREC: Error joining multicast group");

 inet_ntop(AF_INET6, &group_addr, aux,

 INET6_ADDRSTRLEN);

 fprintf(stderr, "DREC: Group:%s\n", aux);

 return FALSE;

 }

 /* ... */

} /* end JoinGroup() */

static void /HDYH*URXS(struct in6_addr group_addr,

 struct in6_addr iface_addr,

 DrecSocket *recvSocketList)

{

 /* ... */

 struct ipv6_mreq mreq;

 char aux[INET6_ADDRSTRLEN];

 /* ...*/

 mreq.ipv6mr_multiaddr = group_addr;

 mreq.ipv6mr_interface = if_nametoindex(interfaceName);

#ifdef IPV6_LEAVE_GROUP

 if(setsockopt(theSocket->fd, IPPROTO_IPV6,

 IPV6_LEAVE_GROUP,(char *)&mreq,

 sizeof(mreq))<0)

#else

 if(setsockopt(theSocket->fd, IPPROTO_IPV6,

 IPV6_DROP_MEMBERSHIP,(char *)&mreq,

 sizeof(mreq))< 0)

#endif

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 40 of 68

 {

 perror("DREC: Error leaving multicast group");

 inet_ntop(AF_INET6, &group_addr, aux, INET6_ADDRSTRLEN);

 printf("DREC: Group:%s\n", aux);

 }

} /* end LeaveGroup() */

In these functions, it is showed the use of different constants for join/leave multicast groups,
the use of inet6_ntop() to print an IPv6 address, and the form in which the parameters
for the IPv6 group are passed through the ipv6_mreq structure with the help of function
if_nametoindex().

����6HQGLQJ�URXWLQJ�KHDGHUV

To send routing headers, the API define three primary functions:
inet6_rthdr_space()

inet6_rthdr_init()

inet6_rthdr_add()

Some other functions are defined and available, but they are not used by MGENv6. The
following function is used to send routing headers:

/* global variable */

msghdr msg;

void 6HQG5RXWLQJ+HDGHU(MgenEvent *nextEvent)

{

 int i;

 struct cmsghdr *cmsg_ptr;

 /* reserve memory for the cmsghdr and initialize

 the fields for Routing Header */

 cmsg_ptr = inet6_rthdr_init(msg.msg_control + msg.msg_controllen,

 IPV6_RTHDR_TYPE_0);

 /* add the intermediate IPv6 address to the structure cmsghdr */

 for(i=0; i<nextEvent->routing.ndirs; i++)

 inet6_rthdr_add(cmsg_ptr, nextEvent->routing.dirs + i,

 IPV6_RTHDR_STRICT);

 /* set the last hop behavior */

 inet6_rthdr_lasthop(cmsg_ptr, IPV6_RTHDR_LOOSE);

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 41 of 68

 /* upgrade the msg_controllen. */

 msg.msg_controllen =

 msg.msg_controllen +

 inet6_rthdr_space(IPV6_RTHDR_TYPE_0,

 nextEvent->routing.ndirs);

}

The inet6_rthdr_init() function initialises the buffer pointed to by
msg.msg_control to contain a routing header of the specified type. The caller must
allocate the buffer, with a size that can be determined by calling inet6_rth_space().
The function returns a pointer to the cmsghdr structure that contains the routing header
option.

The inet6_rthdr_add() function adds the IPv6 address to the end of the routing header
being constructed.

Finally, the type of source routing is specified for the last hop (only defined in [RFC2292]),
and the controllen member is updated with the function inet6_rthdr_space().

����6HQGLQJ�KRS�E\�KRS�DQG�GHVWLQDWLRQ�RSWLRQV

All hop-by-hop options must be specified by a single ancillary data object. The option is
normally constructed using inet6_option_init() and inet6_option_append() functions, define in
[RFC2292].

MGENv6 uses the following function to send hop-by-hop options:
void 6HQG2SWLRQ+HDGHU(MgenEvent *nextEvent)

{

 int i;

 struct cmsghdr *cmsg_ptr;

 /* ... */

 /* This call builds the cmsghdr structure in the control buffer.*/

 if (inet6_option_init(msg.msg_control + msg.msg_controllen,

 &cmsg_ptr,

 nextEvent->options_buf[i].type_anci)==-1)

 {

 perror("inet6_option_init:\n");

 exit(1);

 }

 /* the values for the option have been filled before:

 option.type = type_of_the_option;

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 42 of 68

 option.len = len_of_data + alignY ;

 option.value[] = data;

 Also, it should be set the values for:

 option.alignX = align X in "xn + y",

 specific for the option.

 option.alignY = align Y in "xn + y",

 specific for the option.

 */

 /* this call appends the Hop-by-Hop option */

 /* into the cmsgptr ptr that has been initialized by */

 /* inet6_option_init(). The length of the option is taken */

 /* from option.len value. */

 if(inet6_option_append(cmsg_ptr,

 &(nextEvent>options_buf[i].type),

 nextEvent->options_buf[i].alignX,

 nextEvent->options_buf[i].alignY)==-1)

 {

 perror("inet6_option_append:\n");

 exit(1);

 }

 /* Upgrade msg_controllen. 2 is for type & len values */

 /* of the option. */

 msg.msg_controllen = msg.msg_controllen +

 inet6_option_space(nextEvent->options_buf[i].len + 2);

}

The inet6_option_init() function is called once per ancillary data object that will contain either
hop-by-hop or destination options. It returns 0 on success or -1 on an error.

The first parameter of inet6_option_init() function is a pointer to a previously allocated space
that will contain the ancillary data object (a cmsghdr structure). It must be large enough to
contain all the individual options to be added by later calls to inet6_option_append().

The second one is a pointer to a pointer to a cmsghdr structure. This pointer is initialized by
this function to point to the cmsghdr structure constructed by this function in the buffer
pointed by the first argument.

The last argument is either IPV6_HOPOPTS or IPV6_DSTOPTS. This type is stored in the
cmsg_type member of the cmsghdr structure pointed to by the first parameter.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 43 of 68

The inet6_option_append() appends a hop-by-hop option or a destination option into an
ancillary data object that has been initialized by inet6_option_init(). This function returns 0 if
it succeeds, or -1 on an error.

The first parameter of inet6_option_append() function is a pointer to the cmsghdr structure
that must have been initialized by inet6_option_init().

The next parameter is a pointer to the 8-bit option type. It is assumed that this field is
immediately followed by the 8-bit option data length field, which is then followed
immediately by the option data. The caller initializes these three fields (the type-length-value,
or TLV) before calling this function.

The rest of parameters are the value x and y in the alignment term "xn + y" previously
described.

Finally, MGENv6 uses the inet6_option_space() function to upgrade the controllen field.

����6HQGLQJ�VRXUFH�DGGUHVV

CMSG macros are used to access the fields of cmsg header. MGENv6 use the following
function:

void 6HQG6RXUFH$GGUHVV(MgenEvent *nextEvent)

{

 struct cmsghdr *cmsg_ptr;

 cmsg_ptr= (struct cmsghdr *)(msg.msg_control +

 msg.msg_controllen);

 cmsg_ptr->cmsg_level = IPPROTO_IPV6;

 cmsg_ptr->cmsg_type= IPV6_PKTINFO;

 cmsg_ptr->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));

 memcpy(CMSG_DATA(cmsg_ptr), &nextEvent->sourceAddr,

 sizeof(struct in6_pktinfo));

 msg.msg_controllen= msg.msg_controllen +

 CMSG_SPACE(sizeof(struct in6_pktinfo));

}

����5HFHLYLQJ�H[WHQVLRQ�KHDGHUV

To receive and interpret extension headers, the following loop is used to parse the cmsghdr
structure:

 /* scan the Ancillary Data Objects... */

 for (cmsg_ptr = (struct cmsghdr *)CMSG_FIRSTHDR(msg);

 cmsg_ptr != NULL;

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 44 of 68

 cmsg_ptr = (struct cmsghdr *)CMSG_NXTHDR(msg, cmsg_ptr))

 {

 if (cmsg_ptr->cmsg_len == 0)

 {

 /* Error handling */

 fprintf(stderr, "Error handling with msghdr\n");

 break;

 }

 /* follow with the parse of extension headers */

 /* ... */

 }

Next, inside the loop, the cmsg_prt->cmsg_level and cmsg_ptr->cmsg_type are
examined:

 /* Parse an IPv6 Routing Header */
 if((cmsg_ptr->cmsg_level == IPPROTO_IPV6) &&

 (cmsg_ptr->cmsg_type == IPV6_RTHDR))

 {

 ptr = CMSG_DATA(cmsg_ptr);

 /* process data pointed to by ptr */

 write_routing_header((struct ip6_rthdr0 *)ptr);

 }

To parse hop-by-hop and destination options, the following code applies (inside we can find
the loop described before):

 /* Parse an Hop-by-Hop Options */
 if((cmsg_ptr->cmsg_level == IPPROTO_IPV6) &&

 (cmsg_ptr->cmsg_type == IPV6_HOPOPTS))

 {

 while (inet6_option_next(cmsg_ptr, &ptr) == 0)

 {

 if (ptr[0] == IP6OPT_ROUTER_ALERT)

 printf(“Router Alert option\n”);

else

 if (ptr[0] == IP6OPT_JUMBO)

 printf(“Jumbo payload option\n”);

 else

 printf("unknown hop-by-hop option type\n”);

 }

 if (ptr != NULL)

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 45 of 68

 perror("error encountered by inet6_option_next():\n");

 }

In BSD, the parsing of hop-by-hop and destination options is made with a different API,
[draft-ietf-ipngwg-rfc2292bis-02.txt] instead of [RFC2292], and can be performed as follows:

 /* Parse an Hop-by-Hop Options */

 if((cmsg_ptr->cmsg_level == IPPROTO_IPV6) &&

 (cmsg_ptr->cmsg_type == IPV6_HOPOPTS))

 {

 extbuf= (struct ip6_hbh *)CMSG_DATA(cmsg_ptr);

 extlen= (extbuf->ip6h_len + 1) * 8;

 currentlen= 0;

 while((currentlen= inet6_opt_next(extbuf, extlen,

 currentlen,

 &type, &len,

 &databuf)) >= 0)

 {

 if(type == IP6OPT_ROUTER_ALERT){

 uint16_t value;

 inet6_opt_get_val((void *)databuf, 0, &value,

 sizeof(value));

 /* value has the first 4-bytes of data of

 the option */

 } else

 if (type == IP6OPT_JUMBO)

 {

 uint32_t value;

 inet6_opt_get_val((void *)databuf, 0, &value,

 sizeof(value));

 /* value has the first 4-bytes of data of

 the option */

 } else

 printf("unknown hop-by-hop option type\n",

 type, len);

 }

 }

Note that there is a new function, inet6_get_val(), and a redefinition of inet6_option_next()
with a new list of parameters and a new name: inet6_opt_next().

The inet6_opt_next() function parses the received option extension headers, returning a
pointer to the next option. The first two parameters identify the memory zone in which the
option can be found, and its size (equivalent to the cmsg_data field of the cmsghdr structure).

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 46 of 68

The next one specifies the position to continue the scan of the extension buffer (its an offset),
and it should either be zero (for the first option) or the length returned by a previous call to
inet6_opt_next() (since this function returns the offset that can be used for pointing to the next
option). The type/length/value fields are obtained in the next three arguments. If there are not
more options, or if the option extension header is malformed, the return value is –1.

The inet6_opt_get_val() function interprets one value element contained in the value field (we
can find several elements in a given value field: for instance, several directions in a routing
header). This function eases the identification of the data items contained in the value field,
that can be of various sizes (1,2,4, or 8 bytes), in the data portion of the option. It requires an
offset to point where the value should be extracted, that is updated on each call, to be able to
process iteratively a value field; the first item after the option type and length is accessed by
specifying an offset of zero. The next parameter points to a buffer where it is saved the
extracted data item, and the last one is the length of the buffer. The function returns the offset
for the next field which can be used when extracting option content with multiple fields.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 47 of 68

��� 1HZ�DSSOLFDWLRQV�GHYHORSPHQW

The migration period will be long (some years). Therefore, it will be necessary to take into
account what to do with the development of new applications. New applications should be
written for IPv6 in top of the IPv6 API. However, support for IPv4 should be considered to
work properly not only on dual-stack environments but also on IPv4 enabled interfaces.

There is a need to develop code that could work with the IPv6 interface and with systems that
only implement the IPv4 interface. Some code can be added to detect automatically which
kind of interface should be used for communications.

int ipv6_supported (void)

{

 int s;

#ifdef AF_INET6

s= socket(AF_INET6, SOCK_STREAM, 0);

if (s != -1) {

(void) close(s);

return (1);

}

switch (errno) {

case EMFILE: /* can´t tell if IPv6 is supported */

return (-1);

default: return (0);

}

#else

return (0);

#endif

}

However, the above code does not handle the case of library symbols that only exist in the
IPv6 versions of the library such as LQHWBSWRQ��1�� Thus the application would have to use
dlsym(3X) with RTLD_NEXT to access these symbols and relay just on IPv4 if the symbols
are not available.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 48 of 68

��� (YDOXDWLRQ�RI�VHUYLFHV�DQG�VFHQDULRV

The successful deployment of IPv6 over real corporative networks depends on user
acceptability where performance is a important criteria. This chapter introduces the
performance analysis criteria to take in account to make correct evaluation. The objective is to
analyze and study the impact of transitions mechanisms on application performance in terms
of bandwidth.

The main characteristics to take in account to compare IPv4 and Ipv6 scenarios are the
following:

• The packets header size.

• The packets payload. The actual TCP payload is 1460 bytes in IPv4 and 1440 bytes in
IPv6.

• Time taken to process IP packets.

The results depends very much on the application protocol. However, the overall performance
is estimated about 10% deterioration in IPv6, compared to the IPv4 version.

����6WUHVV�WHVWV

First of all, the conditions in which the test is performed should be stated. This should include
at least:

• +DUGZDUH� processor type and speed, memory, and network interface model

• 6RIWZDUH� operating system version, and patches, service packs or other software that
could be required for making the tests. It should also be detailed the steps followed to
configure properly the equipment involved in the test. And to fully characterize the test
conditions, an IP address map could be depicted, and network status and routing table
should be listed

• 7RSRORJ\� although in the case considered is almost straightforward, the topology
should be detailed if additional equipment (hubs for example) is used. The system’s
general structure could be:

������ 7HVWV�GHILQLWLRQ

The main object of these tests is to check the behaviour of the system under different load
conditions. We are more interested in characterizing UDP behaviour than TCP, since
multimedia applications (and most applications requiring QoS guarantees) are based on UDP.
However, TCP behaviour will be addressed. The tools employed for the tests are Netperf
Mgen6 and Delay6. A brief description of Mgen6 and both can be found in Appendix A, and
B, respectively. The parameters to analyse are the throughput that can be achieved, delay, and
jitter.

Source Destination

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 49 of 68

������ 7&3�EHKDYLRXU

For the analysis of TCP behaviour Netperf will be used. Netperf (www.netperf.org) has been
ported to IPv6. The test to perform is to execute netserver on one machine, and netperf –H
serverName on the other. A transmission test is carried out for 10 seconds, trying to achieve
maximum performance; the throughput obtained is the merit figure of the test.

������ 8'3�5DWH�OLPLW

We can use the traffic generator tool Mgen adapted to IPv6 to find out the maximum rate a
system can support. All we have to do is increase monotonically the rate we send to the
destination. This experiment should be performed for different packet sizes.
We can try with packet sizes (in bytes) of 16, 64, 128, 512, 1024, 1408. For each packet size,
a series of experiments should be carried out, in which the number of packets/s sent is varied.
We should perform at least 20 tests per packet size (in order to be able to obtain enough
number of results), so we could divide the total bandwidth available for a given interface into
20 to obtain the increase in bandwidth we should apply from test to test. For example, if we
are testing a 100 Mbits/s, we could increase the packet sending rate in steps of 100 Mbits/s /
20 = 5 Mbits/s (the correspondent number of packets/s should be computed, taking into
account the packet size, and given as a parameter to the mgen tool); therefore, for a given test
serie – for a given packet size, we can begin with 5 Mbits/s with increases of 5 Mbits/s on
each test until 100 Mbits/s is reached.

The result could be a graphic with the cursed rate in the “y” axis and the packet size (or kbps
generated for every packet size) in the “x” axis. Different lines represent different packet
sizes.

������ 8'3�'HOD\

It is possible to use the PJHQ program to find the delay a packet experiments from the source
to the destination, but an accurate synchronization between machines is required. To
overcome this problem, we can use the Delay6 tool to estimate the delay from the round-trip
time measured.

The most interesting parameter to vary is the delay between the generation of packets, in order
to obtain as results both main an maximum delays. We can use the same methodology
described for the throughput analysis: make several series for different packet sizes, varying
on each serie the sending rate in 1/20th of the maximum rate intervals. Note that in this case
there are two flows, one from source to echo server, and other from echo server to source; so
being different scenarios, the results cannot be directly linked to those obtained in the
throughput test. The result will be a graphic with the mean delay in the “y” axis and the
throughput generated in the “x” axis.

������ 8'3�-LWWHU

One of the results the Mgen program provides is the mean delay between packet arrival (it is
supposed that the generation rate is constant), as well as the maximum and minimum variation
in the delay between packets. We can use these measures to find the jitter in the system.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 50 of 68

We can use the same methodology described for the previous analysis: make several series for
different packet sizes, varying on each serie the sending rate in the same rate intervals
presented. The results will be a graphic representing the mean jitter in the “y” axis versus the
generated rate in the “x” axis.

������)XUWKHU�FRQVLGHUDWLRQV

First of all, the experiments have been described for IPv6 systems, but all of them should also
be tested with IPv4, and the results compared.

We should also make cross experiments involving different operating systems (however, only
between those OS with an Mgen port, Linux and Free-BSD – unfortunately, it has not been
ported to the Windows platform). For Delay, a Linux PC is required in the origin, but the
destination can be any “echo” server, so Linux source and FreeBSD destination can be tested.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 51 of 68

��� &RQFOXVLRQ

The migration of applications is not too much difficult. It can be made in parallel with
network migration and after the provision of a DNS service (and maybe a NIS service).

It is clear that the ability for a particular portion of code to be ported to IPv6 depends on its
own context and the process can not be defined rigidly. However, it can be safely said that, for
simple networking interface, the porting is quite straightforward and, sometimes can be
automated. Applications with changes in the interface or addition of new functionalities
require too much effort, forcing the programmer to analyse and rewrite more than the code
that access to the simple sockets interface.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 52 of 68

��� *ORVVDU\�DQG�$EEUHYLDWLRQV

API Advanced Programming Interface.

BSD Berkeley Software Distribution.

DLL Dinamic Link Library.

DNS Domain Name System.

GPL General Public License.

ICMP Internet Control Message Protocol (ICMPv4, ICMPv6).

IP Internet Protocol (IPv4, IPv6).

ISDN Integrated Services Data Network.

QOS Quality of Service.

RFC Request For Comments.

TCP Transmision Control Protocol.

UDP User Datagram Protocol.

UML Unified Modeling language.

VPN Virtual Private Network.

Double stack Two interfaces IPv4 and IPv6 are available simultaneously.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 53 of 68

��� 5HIHUHQFHV

[RFC1881] ,3Y�� $GGUHVV� $OORFDWLRQ� 0DQDJHPHQW. IAB, IESG. December 1995. (Format:
TXT=3215 bytes) (Status: INFORMATIONAL)

[RFC2292] $GYDQFHG� 6RFNHWV� $3,� IRU� ,3Y�. W. Stevens, M. Thomas. February 1998.
(Format: TXT=152077 bytes) (Status: INFORMATIONAL)

[RFC2375] ,3Y��0XOWLFDVW�$GGUHVV�$VVLJQPHQWV. R. Hinden, S. Deering. July 1998. (Format:
TXT=14356 bytes) (Status: INFORMATIONAL)

[RFC2553] %DVLF�6RFNHW�,QWHUIDFH�([WHQVLRQV�IRU�,3Y�. R. Gilligan, S., Thomson, J. Bound,
W. Stevens. March 1999. (Format: TXT=89215 bytes) (Obsoletes RFC2133) (Status:
INFORMATIONAL)

[RFC2732],)RUPDW� IRU� /LWHUDO� ,3Y�� $GGUHVVHV� LQ� 85/
V. R. Hinden, B., Carpenter, L.
Masinter. December 1999. (Format: TXT=7984 bytes) (Status: PROPOSED
STANDARD)

[RFC2894] 5RXWHU�5HQXPEHULQJ�IRU�,3Y�. M. Crawford. August 2000. (Format: TXT=69135
bytes) (Status: PROPOSED STANDARD)

[draft-ietf-ipngwg-rfc2292bis-02.txt] W. Stevens, M. Thomas, E. Nodmark . $GYDQFHG
6RFNHWV�$3,�IRU�,3Y�. November 2000.

[URL’s draft-ietf-ipngwg-url-literal-02.txt] 3UHIHUUHG�)RUPDW�IRU�/LWHUDO�,3Y��$GGUHVVHV (July
14, 1999)

[draft-ietf-ngtrans-socks-gateway-04.txt] $� 62&.6�EDVHG� ,3Y��,3Y�� *DWHZD\� 0HFKDQLVP,
04/06/2000.

[draft-ietf-ngtrans-translator-03.txt] 2YHUYLHZ�RI�7UDQVLWLRQ�7HFKQLTXHV�IRU�,3Y��RQO\�WR�7DON
WR�,3Y��RQO\��&RPPXQLFDWLRQ, 03/09/2000.

[draft-ietf-ipngwg-rfc2553bis-00.txt] %DVLF�6RFNHW�,QWHUIDFH�([WHQVLRQV�IRU�,3Y�, 05/11/2000.

[draft-ietf-ipngwg-rfc2292bis-01.txt] $GYDQFHG�6RFNHWV�$3,�IRU�,3Y�, 10/28/1999.

[stevens1] Richard Stevens, 8QL[�1HWZRUN�3URJUDPPLQJ�±�9ROXPH��

[stevens2] Richard Stevens, Gary Wright, 7&3�,3�,OOXVWUDWHG�±�9ROXPH��

http://msdn.microsoft.com/library/psdk/winsock/apistart_9g1e.htm

http://msdn.microsoft.com/downloads/sdks/platform/tpipv6/faq.asp

http://www.sockets/winsock2.htm and http://www.stardust.com/winsock/

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 54 of 68

$��$SSHQGL[�$��%DVLF�VRFNHW�LQWHUIDFH�H[WHQVLRQV�IRU�,3Y�

This appendix is aimed to describe the socket interface extensions to support IPv6. These
extensions are designed to provide access to the basic IPv6 features required by TCP and UDP
applications, including multicasting, while introducing a minimum of change into the system
and providing complete compatibility for existing IPv4 applications. Access to more advanced
features (raw sockets, header configuration, etc.) is addressed in [RFC2292].

$����1HZ�6WUXFWXUHV

The protocol family in the socket API defines the domain in which communications take
place. IPv4 protocols use the PF_INET protocol family in the socket API. A new protocol
family is defined for IPv6 protocols, PF_INET6. There is also a new address family name,
AF_INET6. The AF_INET6 definition distinguishes between the original sockaddr_in address
data structure, and the new sockaddr_in6 data structure. The following sockaddr_in6
structure holds IPv6 addresses for 4.3 BSD based systems and is defined as a result of
including the�<netinet/in.h> header (using Posix.1g definition):

struct sockaddr_in6

{

 sa_family_t sin6_family; /* AF_INET6 */

 sin_port_t sin6_port; /* transport layer port # */

 uint32_t sin6_flowinfo; /* IPv6 traffic class &

 flow info*/

 struct in6_addr sin6_addr; /* IPv6 address */

 uint32_t sin6_scope_id; /* set of interfaces for a

 scope*/

};

4.4 BSD based systems define another sockaddr_in6 structure incompatible with 4.3 BSD
variant:

struct sockaddr_in6

{

 uint8_t sin6_len; /* length of this struct */

 sa_family_t sin6_family; /* AF_INET6 */

 sin_port_t sin6_port; /* transport layer port # */

 uint32_t sin6_flowinfo; /* IPv6 traffic class &

 flow info*/

 struct in6_addr sin6_addr; /* IPv6 address */

 uint32_t sin6_scope_id; /* set of interfaces for a

 scope*/

};

The IPv6 address is stored in network byte order and the structure implementation is the
following:

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 55 of 68

struct in6_addr

{

 union {

 uint8_t _S6_u8[16];

 uint32_t _S6_u32[4];

 uint64_t _S6_u64[2];

 } _S6_un;

};

#define s6_addr _S6_un._S6_u8

IPv6 applications interoperate with IPv4 applications through the use of IPv4-mapped IPv6
address format. This address format allows the IPv4 address of an IPv4 node to be
represented as an IPv6 address and therefore it can be used like any other IPv6 address inside
of these structures.

$����6RFNHW�IXQFWLRQV

The only difference between IPv4 and IPv6 socket functions are values which these functions
are called.

The socket function is called using PF_INET for IPv4 or PF_INET6 for IPv6 as protocol value.
Functions using a socket descriptor should manage format address structures according to its
socket protocol family.

A generic socket address, named sockaddr, is used when passing arguments of the socket
functions between kernel and applications. So, these functions can deal with socket address
structures from any other supported families. Applications and the kernel must cast the
specific to the generic socket address structure when calling socket API functions. But the
programming model is worth the same for UDP and TCP applications over IPv4 and IPv6.

struct sockaddr

{

 uint8_t sa_len;

 sa_family_t sa_family; /* AF_XXX: any of supported

 protocol family */

 char sa_data[14]; /* Address depending on family */

};

The wildcard address value typically used in the bind function to tell the kernel to choose the
source local IP address changes when using IPv6. With IPv4, it is used the INADDR_ANY, with
IPv6 the system initializes the in6addr_any variable to the constant IN6ADDR_ANY_INIT,
included in <netinet/in.h>.

The loopback address value, INADDR_LOOPBACK, used to establish IPv4 communications in a
local node is modified when using IPv6 protocol. With IPv6 the system initializes the
in6addr_loopback variable to the constant IN6ADDR_LOOPBACK_INIT.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 56 of 68

$����,QWHUIDFH�LGHQWLILFDWLRQ

Some new functions are defined to deal with interface name and interface index (a small
positive integer that is used to identify uniquely the local interface). These functions are
required, for example, to specify the interface on which a multicast group is joined. The
information related to an interface is saved in the if_nameindex structure:

/* if_nameindex structure hold

struct if_nameindex

{

 unsigned int if_index; /* 1, 2, ... */

 char *if_name; /* null terminated name: "le0" */

};

These are the functions which manage the interface information:

 /* Convert an interface name to an index, and viceversa */

char *if_indextoname(unsigned int ifindex, char *ifname);

unsigned int if_nametoindex(const char *ifname);

/* Return a list of all interfaces and their indices. */

struct if_nameindex *if_nameindex(void);

/* Free the data returned from if_nameindex. */

void if_freenameindex(struct if_nameindex *ptr);

$����1HZ�VRFNHW�RSWLRQV

There are new socket options processed by IPv6 and handled at the IPPROTO_IPV6 level, it is
the code in the system to interpret the option. The IPV6_ prefix is used in all of the new
socket options. The Table 9-1 shows the new IPv6 socket options.

7DEOH������,3Y��VRFNHW�RSWLRQV

2SWLRQ 'HVFULSWLRQ

IPV6_UNICAST_HOPS Controls the hop limit used in outgoing unicast IPv6 packets.

IPV6_MULTICAST_IF Controls the interface to use for outgoing multicast packets. The
argument is the index of the interface to use.

IPV6_MULTICAST_HOPS Controls the hop limit for multicast IPv6 packets.

IPV6_MULTICAST_LOOP If a multicast datagram is sent to a group to which the sending host
itself belongs, a copy of the datagram is looped back by the IP layer
for local delivery if this option is set to 1.

IPV6_JOIN_GROUP Joins a multicast IPv6 group, for BSD systems.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 57 of 68

IPV6_LEAVE_GROUP Leaves a multicast IPv6 group, for BSD systems.

IPV6_ADD_MEMBERSHIP Joins a multicast IPv6 group, for Linux systems.

IPV6_DROP_MEMBERSHIP Leaves a multicast IPv6 group, for Linux systems.

$����$GGUHVV�UHVROXWLRQ�DQG�KDQGOLQJ

Two functions are used to resolve names: gethostbyname() and gethostbyname2(). These
functions search for the resolution in local files, such as /etc/hosts, and in the DNS system.
The query result could be an IPv4 and/or an IPv6 address, it on a variable called
RES_USE_INET6. Its value is 1 when it is active and 0 when not. This value can be changed in
three ways:

�)RU� RQO\� RQH� DSSOLFDWLRQ�� it is modified by calling the res_init() function and
including the following option:

include <resolv.h>

void myFunction () {

 /* ... */

 res_init();

 res.options | =RESUSE_INET6;

 /* ... */

}

�)RU� D� SDUWLFXODU� HQYLURQPHQW� RES_USE_INET6 is active if the environment variable
RES_OPTIONS equals to inet6:

root@host> export RES_OPTIONS=inet6

�)RU�D�ZKROH�KRVW��Only one line must be added to the /etc/resolv.conf file:
Options inet6

The gethostbyname() function, included in <netdb.h>, returns a pointer to a structure
called hostent which contains all the IPv4 or IPv6 addresses related to a hostname.,
depending on the value of the RES_USE_INET6 variable.

struct hostent *gethostbyname (const char *KRVWQDPH);

If RES_USE_INET6 equals to 0, all the IPv4 addresses are returned. In the other case, if
RES_USE_INET6 equals to 1, IPv6 addresses are returned or those existing IPv4 addresses are
returned as IPv4-mapped IPv6 addresses.

The difference between gethostbyname() and gethostbyname2() is that the latter allows to
specify the address family (AF_INET for IPv4 and AF_INET6 for IPv6) to be returned:

struct hostent *gethostbyname2 (const char *hostname, int family);

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 58 of 68

There is another function getipnodebyname() which allows to select the type of returned
address using flags argument:

 struct hostent *getipnodebyname (char *name, int af,

 int flags, int *ernum);

All previous functions are dependent on network protocol. There is a way to make the same
translation as protocol independent operation using the getaddrinfo() function. Developers
should use this function instead of previous ones in order to make protocol independent
source code which could be easily ported to other network platforms.
int getaddrinfo(const char *nodename, const char *servname,

 const struct addrinfo *hints,

 struct addrinfo **res);

The addrinfo structure is defined as a result of the inclusion of the <netdb.h> header and
contains all information to be used in creating a socket from a network end point:

struct addrinfo

{

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME,

 AI_NUMERICHOST */

 int ai_family; /* PF_xxx */

 int ai_socktype; /* SOCK_xxx */

 int ai_protocol; /* 0 or IPPROTO_x for IPv4 and IPv6 */

 size_t ai_addrlen; /* length of ai_addr */

 char *ai_canonname; /* canonical name for nodename */

 struct sockaddr *ai_addr; /* binary address */

 struct addrinfo *ai_next; /* next struct in linked list */

};

The addrinfo structure returned by getaddrinfo() should be deallocated using
freeaddrinfo() function:

void freeaddrinfo(struct addrinfo *ai);

The nodename and servname arguments of getaddrinfo() function are pointers to null-
terminated strings or to null. One, or both of these two arguments must be a non-null pointer.
A non-null nodename string can be either a node name or a numeric host address string.

The caller can optionally pass an addrinfo structure, pointed by the third argument, to
provide hints concerning the type of socket that the caller supports. In this hints, structure
members other than ai_flags, ai_family, ai_socktype, and ai_protocol must be zero or
a null pointer. A value of PF_UNSPEC for ai_family means the caller will accept any protocol
family. A value of 0 for ai_socktype means the caller will accept any socket type. A value
of 0 for ai_protocol means the caller will accept any protocol.

This getaddrinfo() function returns a pointer to a linked list of one or more addrinfo
structures through the final argument. The caller can process each addrinfo structure in this
list by following the ai_next pointer, until a null pointer is encountered.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 59 of 68

The following example illustrates the use of getaddrinfo() function:
bzero(&hints, sizeof(struct addrinfo));

hints.ai_family = PF_INET6;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

ret_ga = getaddrinfo(argv[0], port, &hints, &res);

if (ret_ga) err(1, "connect: %s\n", gai_strerror(ret_ga));

if ((s = socket(res->ai_family, res->ai_socktype, 0)) < 0)

 err(1, "socket");

The function gai_strerror() is defined to aid the applications in printing error messages
based on constants returned by getaddrinfo().

Translations from socket address to hostname and service location can be made using
getnameinfo() function:

 int getnameinfo(const struct sockaddr *sa, socklen_t salen,

 char *host, socklen_t hostlen,

 char *serv, socklen_t servlen,

 int flags);

If the returned value is non-zero the resolution succeed.

$����$GGUHVV�FRQYHUVLRQ�IXQFWLRQV

The addresses are represented in two different ways: the structure used by programs and the
ASCII format used to print the addresses so they can easily be understood, named presentation
format. There are functions which perform the translation between both kinds of
representation addresses:

int inet_pton(int af, const char *src, void *dst);

const char *inet_ntop(int af, const void *src, char *dst,

 size_t size);

The inet_pton() function converts an address in its standard text presentation form into its
numeric binary form.

The inet_ntop() function converts a numeric address into a text string suitable for
presentation

In order to allow applications to easily declare buffers of the proper size to store IPv4 and
IPv6 addresses in string form, the following two constants are defined in <netinet/in.h>:

#define INET_ADDRSTRLEN 16

#define INET6_ADDRSTRLEN 46

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 60 of 68

$����1HZ�PDFURV

There are defined macros for testing special IPv6 addresses. All this macros have the prefix
IN6_IS_ADDR_XXXX. Next there is a brief list of them:

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);

int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);

int IN6_IS_ADDR_MULTICAST (const struct in6_addr *);

int IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);

int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);

int IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);

int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);

int IN6_IS_ADDR_MC_NODELOCAL(const struct in6_addr *);

int IN6_IS_ADDR_MC_LINKLOCAL(const struct in6_addr *);

int IN6_IS_ADDR_MC_SITELOCAL(const struct in6_addr *);

int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);

int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 61 of 68

%��$SSHQGL[�%��$GYDQFHG�VRFNHWV�$3,�IRU�,3Y�

This section is based mainly on the specification [RFC2292], that describes the features of
IPv6 that some applications will need for managing raw sockets and accessing to IPv6 headers
not addressed in RFC-2553. The Linux API is based on [[RFC2292]], while FreeBSD
conforms to [draft-ietf-ipngwg-rfc2292bis-02.txt] , a slight variation of the former RFC.

%����$FFHVVLQJ�WR�,3Y��DQG�H[WHQVLRQ�KHDGHUV

Applications and kernel can exchange the following optional information:

• Send/receive interface and source/destination address.

• Hop limit.

• Next hop address.

• Routing header.

• Hop by hop options.

• Destination options.

There are two different mechanisms for the specification of the sending or reception of
optional information, based on VHWVRFNRSW��� to specify the option content for a socket,
named “sticky” options since they affect all transmitted packets on the socket until either a
new VHWVRFNRSW�� is called, or the options are overridden using ancillary data, to specify the
option content for a single datagram. This only applies to datagram and raw sockets; not to
stream sockets.

%����$QFLOODU\�GDWD

The most general I/O socket functions are: UHFYPVJ�� and VHQGPVJ��. Both of them use the
PVJKGU structure to save information related to the I/O operations. This structure is included
in �V\V�VRFNHW�K!�

struct msghdr

{

void *msg_name; /* ptr to socket address

 structure */

socklen_t msg_namelen; /* size of socket address

 structure */

struct iovec *msg_iov; /* scatter/gather array */

size_t msg_iovlen; /* # elements in msg_iov */

void *msg_control; /* ancillary data */

socklen_t msg_controllen;/* ancillary data buffer len */

int msg_flags; /* flags on received message */

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 62 of 68

 };

The ancillary data fields of the PVJKGU structure provide a clean way to pass information in
addition to the data that is being read or written. The inclusion of the PVJBFRQWURO and
PVJBFRQWUROOHQ members of the PVJKGU structure along with the FPVJKGU�structure that is
pointed to by the PVJBFRQWURO member makes possible the specification of ancillary data
objects for the send/receive operations performed with UDP sockets.

Ancillary data consist of a list of one or more ancillary data objects, each one beginning with a
FPVJKGU structure:

struct cmsghdr

{

socklen_t cmsg_len; /* # bytes, including this

 header */

int cmsg_level; /* originating protocol */

int cmsg_type; /* protocol-specific type */

/* followed by unsigned char cmsg_data[]; */

};

Hence, PVJBFRQWURO points to the first FPVJKGU structure and PVJBFRQWUROOHQ is the length
of all included FPVJKGU. The following Table B-1 shows macros which simplify the
processing of ancillary data objects that a FPVJKGU structure has as parameters:

7DEOH�%����0DFURV�WR�VLPSOLI\�WKH�SURFHVVLQJ�RI�DQFLOODU\�GDWD

0DFURV 'HILQLWLRQ
CMSG_FIRSTHDR() Returns a pointer to the first cmsghdr in the msghdr structure.

CMSG_NXTHDR() Returns a pointer to the cmsghdr structure describing the next ancillary
data object.

CMSG_DATA() Returns a pointer to the data, named cmsg_data[] member.
CMSG_SPACE() Returns an upper bound on the space required by the object and its

cmsghdr structure, including any padding.
CMSG_LEN() From the length of ancillary data object returns the value to store in

cmsg_len member of the cmsghdr structure.

%����6RFNHW�RSWLRQV�DQG�DQFLOODU\�GDWD

As we have already seen, to receive optional information applications must select the
necessary socket option and must use ancillary data to manage this optional information. The
following Table B-2 shows the relation between the socket options and the data type filled in
the cmsg_type of the ancillary field.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 63 of 68

7DEOH�%����5HODWLRQ�EHWZHHQ�VRFNHW�RSWLRQV�DQG�FPVJBW\SH�RI�DQFLOODU\�GDWD�

[RFC2292] Option name [draft-ietf-ipngwg-
rfc2292bis-02.txt]

 Option name

Cmsg_type

IPV6_PKTINFO IPV6_RECVPKTINFO IPV6_PKTINFO

IPV6_HOPLIMIT IPV6_RECVHOPLIMIT IPV6_HOPLIMIT

IPV6_RTHDR IPV6_RECVRTHDR IPV6_RTHDR

IPV6_HOPOPTS IPV6_RECVHOPOPTS IPV6_HOPOPTS

IPV6_DSTOPTS IPV6_RECVDSTOPTS IPV6_DSTOPTS

IPV6_RTHDRDSTOPTS IPV6_RECVRTHDRDST
OPTS

IPV6_RTHDRDSTOP
TS

When any of these options is enabled, the corresponding data is returned as control
information by recvmsg(), as one or more ancillary data objects.

%����+RS�E\�KRS�RSWLRQV�DQG�GHVWLQDWLRQ�RSWLRQV

A variable number of hop-by-hop options can appear in a single hop-by-hop option header.
Each option in the header is TLV-encoded with a type, length, and value field.

The options have alignment restrictions. The alignment of the first byte of each option is
specified by tow values, called x and y, written as “xn+y”. This states that the option must
appear at an integer multiple of x bytes from the beginning of the option header (x can have
the values 1,2,4 or 8), plus y bytes (y can have a value between 0 and 7, inclusive).

Applications must enable the IPV6_HOPOPTS/IPV6_RECVHOPOPTS socket option to
receive hop by hop options. When using ancillary data, cmsg_level must equal to
IPPROTO_IPV6 and cmsg_type must be IPV6_HOPOPTS.

Applications must enable the IPV6_DSTOPTS/IPV6_RECVDSTOPTS socket option to
receive destination options. When using ancillary data, cmsg_level must equal to
IPPROTO_IPV6 and cmsg_type must be IPV6_DSTOPTS.

There are defined four functions to build an option to send:
/* returns the number of bytes to hold an option */

int inet6_option_space (int nbytes);

/* called for each ancillary object which contains a

 hop by hop option or a destination option */

int inet6_option_init (void *buf, struct cmsghdr **cmsgp,

 int type);

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 64 of 68

/* appends a hop by hop option or a destination option

 to an ancillary object */

int inet6_optionappend (struct cmsghdr *cmsg,

 const uint8_t *typep,

 int multx, int plusy);

/* allocates an ancillary object */

uint8_t *inet6_option_alloc(struct cmsghdr *cmsg, int datalen,

 int multx, int plusy);

There are defined two functions to process a received option:
 /* process the next option */

int inet6_option_next(const struct cmsghdr *cmsg, uint8_t **tptr);

/* search for an option type */

int inet6_option_find(const struct cmsghdr *cmsg, uint8_t *tptrp,

 int type);

%����5RXWLQJ�KHDGHUV

Applications must enable the IPV6_RTHDR/IPV6_RECVRTHDR socket option to receive
the routing header. When using ancillary data, cmsg_level must equal to IPPROTO_IPV6 and
cmsg_type must be IPV6_RTHDR.

There are defined four options to build one of this kind of options to send:
/* returns number of bytes to hold ancillary data containing

 a routing header */

size_t inet6_rthdr_space (int type, int segments);

/* initialises an ancillary data to contain a routing header */

struct cmsghdr *inet6_rthdr_init(void *bp, int type);

/* adds an Ipv6 address to the end of the routing header */

int inet6_rthdr_add (struct cmsghdr *cmsg,

 const struct in6_addr *addr,

 unsigned int flags);

/* specifies the flag for the final hop */

int inet6_rthdr_lasthop (struct cmsghdr *cmsg,

 unsigned int flags);

There are defined three functions to process a received routing header:
int inet6_rth_reverse (void *in, void *out);
int inet6_rth_segments(const void *bp);
itruct in6_addr *inet6_rth_getaddr (const void *bp, int index);

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 65 of 68

%����3DFNHW�LQIR

The source/destination address, the outgoing/arriving interface index, the outgoing/arriving
hop limit and the next hop address can be specified using the IPV6_PKTINFO ancillary data
object. The structure is:

struct in6_pktinfo

{

struct in6_addr ipi6_addr; /* src/dst IPv6 address */

unsigned int ipi6_ifindex; /* send/recv interface index */

};

Applications must enable the IPV6_PKTINFO/IPV6_RECVPKTINFO socket option to receive
the packet information. When using ancillary data, cmsg_level must equal to IPPROTO_IPV6
and cmsg_type must be IPV6_PKTINFO.

Applications must enable the IPV6_HOPLIMIT/IPV6_RECVHOPLIMIT socket option to receive
the received hop limit. When using ancillary data, cmsg_level must equal to IPPROTO_IPV6
and cmsg_type must be IPV6_HOPLIMIT.

To receive next hop address info, applications must specify in the ancillary data the
cmsg_type as IPV6_NEXTHOP.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 66 of 68

&��$SSHQGL[�&��0JHQ�

To use Mgen6 (a tool adapted to IPv6 by University Carlos III), a traffic emitter (mgen6) has
to be started in the source terminal and the traffic receiver (drec6) in the destination
terminal.

So the first thing we have to do is to start the drec program:
 ./drec6 -p 5000 -i eth1 BE1

Where we ask the program to listen on interface eth1 and port 5000, and to redirect the results
to file BE1.

Next , we have to start the mgen6 in the traffic source :
 ./mgen6 gscript

Where JVFULSW is the configuration file to use.

An example coud be:

 ###

INTERFACE eth1

<time> <flow_id> ON <addr:port> <pattern> <rate> <size>

time is in miliseconds

<flow_id> is the flow identifier

<addr port> destination address and port

<pattern> PERIODIC or POISSON (burst)

<rate> packets/s

<size> size of every packet in bytes

00000 1 ON 2002:A375:8B2C:1E:2C0:26FF:FE10:193F 5000

 PERIODIC 100 1024

 10000 1 OFF

 ###

With this configuration, 800 Kbps traffic are sent for 10 seconds from the source to the
destination. The processing of the raw data obtained is done after stopping the drec program
with the mcalc6 utility in the form.

 ./mcalc6 BE1

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 67 of 68

 We can obtain statistics of the traffic for the receiver, like the mean received rate for this
flow, the delay variation or the number of packets dropped. Synchronization between
machines is required if the delay is to be accurately measured.

IST-1999-20393/ UPM /WP3.1/DS/P/1/b0

Description of IPv4/IPv6 available transition strategies

Page 68 of 68

'��$SSHQGL[�'��'HOD\�

This tool (developed by Telefonica I+D) sends one UDP packet/s to the “echo” port of the
remote host, that it returns back to the origin host, allowing the source to measure the delay.

The syntax of the program is:
./delay6 –p N -d delay –H remote_host –F output_file

An example could be:
./delay6 –H 2002:A375:8B2C:1E:2C0:26FF:FE10:193F –p 500 \

–d 1000000 –F f1

where we mean we are sending to the remote host 500 packets, the delay between packets is
one second, and the output file is f1. Packet length can be selected with the –L flag.

The processing of the data is done with the program procesa_stat in the following form:
./procesa_stat f1

For every received packet, there is a line with the output time, the arrival time and the round
trip time.

We can take the data to an Excel page to find the mean delay, that is the result considered in
the proposed measures:

∑
=

=
1

L

LG
1

G
1

1

